AI基础 -- AI学习路径图

embedded/2025/2/12 16:14:03/

人工智能从数学到大语言模型构建教程

第一部分:AI 基础与数学准备

1. 绪论:人工智能的过去、现在与未来

2. 线性代数与矩阵运算

  • 向量与矩阵的基本概念
  • 矩阵分解(特征值分解、奇异值分解)
  • 张量运算简介(为后续深度学习做准备)
  • 在机器学习和深度学习中的应用示例

3. 概率论与统计基础

  • 随机变量、分布与期望方差
  • 贝叶斯理论与最大似然估计
  • 信息论(熵、KL 散度等)在机器学习中的应用
  • 大数定律与中心极限定理在模型训练与评估中的意义

4. 微积分与优化方法

  • 函数、微分、积分回顾
  • 梯度与偏导数,链式法则
  • 凸优化与非凸优化
  • 常用优化算法(梯度下降、牛顿法、随机梯度下降及其变体 Adam、RMSProp 等)

第二部分:传统机器学习与工程基础

5. 机器学习基础算法

  • 监督学习:回归(线性回归、岭回归、Lasso)与分类(逻辑回归、SVM、决策树等)
  • 无监督学习:聚类(K-Means、层次聚类等)、降维(PCA、t-SNE等)
  • 强化学习的初步概念(马尔可夫决策过程、值函数、策略)
  • 评估指标与交叉验证

6. 工程实践与数据处理

  • 数据采集与预处理:清洗、去噪、特征工程
  • 大规模数据存储与处理(分布式计算、Hadoop、Spark 等)
  • 特征选择与特征构造
  • Pipeline 与自动化训练流程管理

第三部分:深度学习原理与模型

7. 神经网络基础

  • 感知机与多层感知机(MLP)
  • 前向传播与反向传播
  • 激活函数(Sigmoid、ReLU、Tanh、Leaky ReLU 等)
  • 正则化与损失函数(L1/L2、Dropout、Batch Normalization 等)

8. 卷积神经网络(CNN)

  • 卷积操作与池化操作原理
  • 经典 CNN 架构介绍(Lenet、AlexNet、VGG、ResNet、Inception 等)
  • 在图像识别、目标检测等方面的应用
  • CNN 模型的优化技巧(数据增广、Batch Size、学习率调整等)

9. 循环神经网络(RNN)及其变体

  • RNN 的结构与梯度消失/爆炸问题
  • LSTM、GRU 等改进结构
  • 在时间序列、序列预测、文本数据处理等任务中的应用
  • 序列到序列模型(Seq2Seq)、注意力机制的早期引入

10. Transformer 与注意力机制

  • 自注意力(Self-Attention)的核心原理
  • Transformer 模型结构(Encoder、Decoder)
  • 优势与局限(并行化、长程依赖等)
  • 在机器翻译和语言理解任务上的应用案例

第四部分:NLP 核心技术与大语言模型

11. 自然语言处理基础

  • 词向量(Word2Vec、GloVe)与分词技术
  • 语料预处理与常见 NLP 任务(文本分类、情感分析、命名实体识别等)
  • 评测指标(BLEU、ROUGE、Perplexity 等)
  • 传统 NLP 模型回顾(n-gram、HMM、CRF 等)

12. 预训练模型与微调

  • 语言模型的概念(语言模型、Mask Language Model 等)
  • 预训练-微调范式的提出与意义
  • BERT 系列、GPT 系列、ELMo、T5 等典型预训练模型
  • 常见微调方法(全参数微调、Prefix Tuning、Adapter 等)

13. 大规模模型的训练与推理

  • 数据准备与大规模数据清洗
  • 分布式训练框架与并行策略(数据并行、模型并行、流水线并行)
  • 混合精度训练、梯度累积、检查点保存等高效训练技巧
  • 超大模型推理优化(Quantization、Knowledge Distillation 等)

14. 构建与部署大型语言模型的完整流程

  • 从零开始搭建一个简化版 Transformer 语言模型
  • 预训练、微调与评估的端到端示例
  • 模型压缩与部署(TensorRT、ONNX 等),服务化与 API 化
  • 线上推理性能监控与故障排查

15. 模型评估、对齐与伦理

  • 语言模型的评估:准确性、一致性、多样性等指标
  • 有害内容、偏见与道德风险
  • 对齐技术与价值观(RLHF 等)
  • 合规与隐私保护

第五部分:进阶与前沿

16. 多模态与跨领域应用

  • 图像与文本的融合(CLIP、ALIGN 等)
  • 文本与语音(ASR、TTS 以及语音聊天系统)
  • 知识图谱与大型语言模型结合
  • AI + IoT、AI + 医疗、AI + 金融等行业实践案例

17. 强化学习与决策智能

  • 深度强化学习(DQN、Policy Gradient、PPO 等)
  • 大模型 + 强化学习在对话系统与复杂任务中的应用
  • AutoML 与 NAS(网络结构搜索)

18. 可解释性与可控性

  • 模型可解释性框架(LIME、SHAP 等)
  • 大模型的可控文本生成方法
  • 对抗攻击与防御
  • 安全与可靠性研究前沿

19. MLOps 与企业级 AI 解决方案

  • 模型生命周期管理(数据版本控制、模型版本控制)
  • 持续训练与持续集成/部署(CI/CD)
  • 大规模分布式基础设施(Kubernetes、Kubeflow 等)
  • AI 产品化与落地案例

第六部分:未来展望与总结

20. 未来趋势与挑战

  • 超大规模模型的演化方向(多任务统一模型、通用人工智能雏形)
  • 新型计算架构(类脑计算、光子计算、量子计算)对 AI 的影响
  • 法规与社会影响(隐私、版权、伦理审查)

http://www.ppmy.cn/embedded/161636.html

相关文章

常见数据结构的C语言定义---《数据结构C语言版》

文章目录 1. 静态分配的顺序表2. 动态分配的顺序表3. 单 链 表4. 双 链 表5. 静态链表6. 顺序栈7. 链栈8. 顺序存储的队列9. 链式存储的队列10. 链式存储的二叉树11. 线索二叉树12. 树的双亲表示法13. 树的孩子兄弟表示法12. 图的邻接矩阵法13. 图的邻接表法1-13集合版本 #defi…

【华为OD-E卷 - 119 评论转换输出 100分(python、java、c++、js、c)】

【华为OD-E卷 - 评论转换输出 100分(python、java、c、js、c)】 题目 在一个博客网站上,每篇博客都有评论。 每一条评论都是一个非空英文字母字符串。 评论具有树状结构,除了根评论外,每个评论都有一个父评论。 当评…

【Vue】在Vue3中使用Echarts的示例 两种方法

文章目录 方法一template渲染部分js部分方法一实现效果 方法二template部分js or ts部分方法二实现效果 贴个地址~ Apache ECharts官网地址 Apache ECharts示例地址 官网有的时候示例显示不出来,属于正常现象,多进几次就行 开始使用前,记得先…

51c自动驾驶~合集49

我自己的原文哦~ https://blog.51cto.com/whaosoft/13164876 #Ultra-AV 轨迹预测新基准!清华开源:统一自动驾驶纵向轨迹数据集 自动驾驶车辆在交通运输领域展现出巨大潜力,而理解其纵向驾驶行为是实现安全高效自动驾驶的关键。现有的开…

【C++动态规划 状压dp】1879. 两个数组最小的异或值之和|2145

本文涉及知识点 C动态规划 状态压缩dp LeetCode1879. 两个数组最小的异或值之和 给你两个整数数组 nums1 和 nums2 ,它们长度都为 n 。 两个数组的 异或值之和 为 (nums1[0] XOR nums2[0]) (nums1[1] XOR nums2[1]) … (nums1[n - 1] XOR nums2[n - 1]) &…

北斗导航 | 基于多假设解分离(MHSS)模型的双星故障监测算法(MATLAB代码实现——ARAIM)

===================================================== github:https://github.com/MichaelBeechan CSDN:https://blog.csdn.net/u011344545 ===================================================== 双星故障监测算法 一、多星故障MHSS模型流程1、数据预处理2、构建假设模…

文理医院预约挂号系统的设计与实现(代码+数据库+LW)

摘要 近年来,信息化管理行业的不断兴起,使得人们的日常生活越来越离不开计算机和互联网技术。首先,根据收集到的用户需求分析,对设计系统有一个初步的认识与了解,确定文理医院预约挂号系统的总体功能模块。然后&#…

玩转观察者模式

文章目录 什么是观察者模式解决方案结构适用场景实现方式观察者模式优缺点优点:缺点:什么是观察者模式 观察者模式通俗点解释就是你在观察别人,别人有什么变化,你就做出什么调整。观察者模式是一种行为设计模式,允许你定义一种订阅机制,可在对象事件发生时通知多个“观察…