利用Python高效处理大规模词汇数据

embedded/2025/2/4 16:29:12/

在本篇博客中,我们将探讨如何使用Python及其强大的库来处理和分析大规模的词汇数据。我们将介绍如何从多个.pkl文件中读取数据,并应用一系列算法来筛选和扩展一个核心词汇列表。这个过程涉及到使用Pandas、Polars以及tqdm等库来实现高效的数据处理。

引言

词汇数据的处理是自然语言处理(NLP)领域中的一个常见任务。无论是构建词典、进行文本分类还是情感分析,都需要对大量的词汇数据进行预处理和分析。本文将演示一种方法,该方法不仅能够有效地管理词汇数据,还能够在处理过程中保持数据的一致性和准确性。

数据准备

首先,我们需要加载初始的词汇数据集,这些数据以.pkl格式存储,并且包含了词汇及其出现的频率。我们选择了一个名为voc_26B.pkl的文件,它包含了所有需要处理的词汇信息。

python">import os
import pandas as pd
from glob import glob
import polars as pl
from tqdm import tqdm# 加载并排序词汇数据
voc = pd.read_pickle("voc_26B.pkl")
voc = voc.sort_values("count", ascending=False)
voc = voc["voc"].values.tolist()

接下来,我们收集所有需要分析的路径,这里假设所有的.pkl文件都位于E:/voc_voc/目录下。

python"># 获取所有路径
paths = glob("E:/voc_voc/*.pkl")
new_voc = set()

数据处理与优化

在这个阶段,我们将遍历每个词汇项,并根据其前缀匹配规则,查找并合并相关的词汇条目。为了确保效率,我们采用了tqdm库来显示进度条,这对于我们了解程序执行进度非常有帮助。

python">for voc_data in tqdm(voc):if voc_data in new_voc:continuenew_voc.update(set([voc_data]))idex = 0data = ""# 循环查找直到找到非空数据while len(data) == 0:data = pd.read_pickle(paths[idex], compression="zip")data1 = pl.DataFrame({"voc": data.keys(), "value": data.values()})data = {k: v for k, v in data.items() if voc_data == k[:len(voc_data)]}idex += 1# 转换为DataFrame并排序data = pd.DataFrame({"voc": data.keys(), "value": data.values()})data = data.sort_values("value", ascending=False).head()# 更新词汇集合data = data["voc"].str[len(voc_data) + 1:].values.tolist()if voc_data in data:data.remove(voc_data)new_voc.update(set(data))# 进一步扩展词汇data3 = []for i in tqdm(set(data)):data2 = [k[len(i) + 1:] for k, v indata1.filter(data1["voc"].str.contains(i + "_")).sort("value", descending=True).to_numpy() ifi == k[:len(i)]][:5]new_voc.update(set(data2))data3 += data2# 深度扩展词汇for i in tqdm(set(data3)):try:data2 = [k[len(i) + 1:] for k, v indata1.filter(data1["voc"].str.contains(i + "_")).sort("value", descending=True).to_numpy() ifi == k[:len(i)]][:5]new_voc.update(set(data2))except:pass# 当词汇数量达到一定规模时保存结果if len(new_voc) > 8192:pd.to_pickle(new_voc, "voc_{}_voc.pkl".format(len(new_voc)))

结果保存

最后,当整个词汇扩展过程完成后,我们将最终的词汇集合保存到一个新的.pkl文件中。

python">pd.to_pickle(new_voc, "voc_{}_voc.pkl".format(len(new_voc)))

总结

通过上述步骤,我们可以看到,Python及其丰富的库使得处理大规模词汇数据变得既简单又高效。特别是tqdm的进步条功能,极大地提升了用户体验,让用户可以直观地了解数据处理的进度。同时,结合使用Pandas和Polars,可以在保证数据处理速度的同时,也确保了代码的简洁性和可读性。

希望这篇博客能为您提供有价值的参考,并激发您在自己的项目中尝试类似的解决方案。如果您有任何问题或想要分享您的经验,请随时留言讨论!


http://www.ppmy.cn/embedded/159512.html

相关文章

SpringBoot源码解析(九):Bean定义接口体系

SpringBoot源码系列文章 SpringBoot源码解析(一):SpringApplication构造方法 SpringBoot源码解析(二):引导上下文DefaultBootstrapContext SpringBoot源码解析(三):启动开始阶段 SpringBoot源码解析(四):解析应用参数args Sp…

STM32_SD卡的SDIO通信_DMA读写

本篇,将使用CubeMXKeil,创建一个SD卡的DMA读写工程。 目录 一、简述 二、CubeMX 配置 SDIO DMA 三、Keil 编辑代码 四、实验效果 实现效果,如下图: 一、简述 上篇已简单介绍了SD、SDIO,本篇不再啰嗦,…

网络安全 | F5-Attack Signatures-Set详解

关注:CodingTechWork 创建和分配攻击签名集 可以通过两种方式创建攻击签名集:使用过滤器或手动选择要包含的签名。  基于过滤器的签名集仅基于在签名过滤器中定义的标准。基于过滤器的签名集的优点在于,可以专注于定义用户感兴趣的攻击签名…

QT+mysql+python 效果:

# This Python file uses the following encoding: utf-8 import sysfrom PySide6.QtWidgets import QApplication, QWidget,QMessageBox from PySide6.QtGui import QStandardItemModel, QStandardItem # 导入需要的类# Important: # 你需要通过以下指令把 form.ui转为ui…

【论文复现】基于维度狩猎学习的改进秃鹰搜索算法用于自动驾驶问题

目录 1.摘要2.秃鹰搜索算法BES原理3.改进策略4.结果展示5.参考文献6.代码获取 1.摘要 由于道路曲率穿透和参数不确定性带来的侧向偏差,自动驾驶车辆控制器面临提供准确、快速响应及小幅超调等性能挑战。本文提出了一种基于维度狩猎学习(DLH)…

攻防世界 fileclude

代码审计 WRONG WAY! <?php include("flag.php"); highlight_file(__FILE__);//高亮显示文件的源代码 if(isset($_GET["file1"]) && isset($_GET["file2"]))//检查file1和file2参数是否存在 {$file1 $_GET["file1"];$fi…

【Pytorch和Keras】使用transformer库进行图像分类

目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理&#xff0c;transformer库能关联到huggface中对应的模型&am…

C++类的初始化列表是怎么一回事?哪些东西必须放在初始化列表中进行初始化,原因是什么?

目录 01-C类的初始化列表的概要介绍语法为什么使用初始化列表&#xff1f;示例代码小结 02-初始化列表是写在构造函数的函数体之前的代码的**1. 结构分析****2. 示例&#xff1a;基类 成员变量****输出** **3. 初始化列表 vs 构造函数体****(1) 使用初始化列表****(2) 在构造函…