统计学习算法——逻辑斯谛回归

embedded/2025/1/16 16:51:28/

内容来自B站Up主:动画讲编程https://www.bilibili.com/video/BV1CR4y1L7RC、风中摇曳的小萝卜https://www.bilibili.com/video/BV17r4y137bW,仅为个人学习所用。

极大似然估计

几率、概率与似然

几率是指某个事件发生的可能性与不发生的可能性之比,即事件发生的几率和不发生的几率的比值。

概率是在特定条件下某事件发生的可能性,在结果没有产生前,根据条件去估算某个事件发生的概率,通常用一个0到1之间的数值表示。

似然的概念与概率相反,是根据已知的事件结果来推测该事件可能在什么条件下发生。我们都知道,抛出一枚质地均匀的硬币,人像和数字在上的概率分别为0.5,假设抛出一枚硬币1万次,其中8千次人像在上,2千次数字在上,那么可以判断该硬币的构造可能有问题,进而推测该硬币的一些参数。

θ \theta θ为条件对应的参数, x x x表示事件发生的结果,在 θ \theta θ条件下 x x x发生的概率表示为 P ( x ∣ θ ) P(x|\theta) P(xθ) P P P是关于 x x x的函数;似然则相反,表示为 L ( θ ∣ x ) L(\theta|x) L(θx),即在已经结果 x x x的条件下, θ \theta θ发生的概率, L L L是关于 θ \theta θ的函数。
在这里插入图片描述

极大似然估计

极大似然估计是在已知观测数据的情况下,找到使这些数据出现的可能性最大的模型参数,即根据事件 x x x的观察结果,推断 θ \theta θ是多少的时候,结果 x x x最有可能发生。

继续抛硬币实验,通过具体实验来得出 θ \theta θ。仍然抛硬币10次,其中7次人像在上,3次数字在上
在这里插入图片描述
假设结果服从二项分布,那么有 L ( θ ) = θ 7 ( 1 − θ ) 3 (有 7 次人像朝上,为 7 个 θ 相乘,其他的同理) L(\theta)=\theta^7(1-\theta)^3 (有7次人像朝上,为7个\theta相乘,其他的同理) L(θ)=θ7(1θ)3(有7次人像朝上,为7θ相乘,其他的同理)
在这里插入图片描述
通过该图像发现,当 θ \theta θ取值为0.7时,函数值达到最大值,说明在当前条件下,最可能发生7次人像在上,3次数字在上。

逻辑斯蒂回归

引入

小明的战队与对手比赛,但小明的战队比较慢热,刚开始找不到手感,与对手零十开,到了10分钟时,与对手一九开,到了游戏中期,手感上来了,与对手五五开,游戏后期达到九一开甚至十零开。
在这里插入图片描述
因为中期的比赛形势不确定,小明想知道在第26分钟的时候能和对面几几开呢?

计算过程

这里说的几几开是指赢下比赛和输掉比赛可能性的比值 几几开 ( 几率 ) = p 1 − p 几几开(几率)=\frac{p}{1-p} 几几开(几率)=1pp

列出相关几率如下图
在这里插入图片描述
转为小数
在这里插入图片描述
当战队十分可能输给对手的时候,赢的几率接近于0,而当战队非常可能赢的时候,该几率更接近于 + ∞ +\infty +

在这里插入图片描述
这种对称轴不对称,不好分析问题,使用几率的对数来分析问题,将数据从正半轴映射到整条数据周轴上。
若以对数几率为y轴,时间为x轴,可以得到线性回归直线。
在这里插入图片描述
通过计算每个点到直线的距离差,然后做最小二乘的优化,可以得到一条最完美的直线来拟合这些数据。查询x轴上某一点,就可以得到当前时间赢下这场比赛的可能性。

问题是有许多点分布在 + ∞ +\infty + − ∞ -\infty 上,如何计算距离误差?在这里插入图片描述
将该直线重新映射回概率空间,通过一系列计算,可以得到逻辑斯蒂函数。
在这里插入图片描述
代入 y = w x + b y=wx+b y=wx+b,得出逻辑斯蒂回归的概率函数在这里插入图片描述
在这里插入图片描述
因此,可以理解为:概率空间里的逻辑斯蒂回归就是对数几率空间里的线性回归
在这里插入图片描述
在概率空间中,可以使用极大似然估计来得到最好的逻辑斯蒂曲线。

假设在时间 x x x的条件下,赢下比赛(y=1)的几率为 p p p,输掉比赛(y=0)的几率为 1 − p 1-p 1p在这里插入图片描述
注意:与前面的函数计算方法类似( L ( θ ) = θ 7 ( 1 − θ ) 3 L(\theta)=\theta^7(1-\theta)^3 L(θ)=θ7(1θ)3

由于一系列式子的乘积是不太容易优化的表达,取对数变成其加法形式
在这里插入图片描述
展开括号,整理,有
在这里插入图片描述
标黄的 l o g log log部分是对数几率,概率空间里的逻辑斯蒂回归就是对数几率空间里的线性回归,将其替换成直线方程, p i p_i pi是逻辑斯蒂函数,代入,得出如下结果
在这里插入图片描述
继续优化得到最好的参数值在这里插入图片描述

a r g m a x argmax argmax函数:找出使函数取得最大值的自变量。假设教计算机识别图片是猫、狗还是兔子。计算机对一张图片会输出三个数字[0.2,0.7.0.1],比如说 ,这三个数字分别代表这张图片是猫、狗、兔子的可能性。这里的函数就是计算可能性的那个规则。那 argmax 就是帮你找出哪个可能性最大。在这个例子中,最大的是0.7 ,对应的是狗,所以计算机就会认为这张图片是狗。

将时间代入,就可以得到相关的概率。
在这里插入图片描述


http://www.ppmy.cn/embedded/154432.html

相关文章

刷题记录 回溯算法-10:93. 复原 IP 地址

题目:93. 复原 IP 地址 有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址…

软件设计大致步骤

由于近期在做软件架构设计,这里总结下大致的设计流程 软件设计流程 1 首先要先写系统架构图,将该功能在整个系统的位置以及和大致的内部模块划分 2 然后写内部的结构图,讲内部的各个子系统,模块,组件之间的关系和调用…

SpringBoot之OriginTrackedPropertiesLoader类源码学习

源码解析 /*** 作用是从给定的资源(如文件或输入流)中加载 .properties 文件,* 并将属性键值对转换为带有来源信息(origin)的 OriginTrackedValue 对象。*/ public class OriginTrackedPropertiesLoader {private fin…

1,Linux环境变量基本定义(基于Ubuntu示例进行讲解)

linux环境变量的概念 Linux环境变量(准确说应该是shell变量),是直接存储在操作系统中的一组键值对(dict类型),用于配置系统和应用程序的操作行为。 【有经验的描述】:它们的工作原理很简单&am…

Shell作业二

1、编写一个Shell脚本用于判断192.168.242.0/24网络中当前在线的IP地址,并打印出这些IP地址。 脚本: #!/bin/bash# 网络前缀 NETWORK"192.168.242"echo "正在扫描网络 $NETWORK.0/24 中的活动主机..."# 遍历主机地址 for i in {1..…

JavaScript系列(26)--安全编程实践详解

JavaScript安全编程实践详解 🔒 今天,让我们深入探讨JavaScript的安全编程实践。在当今的网络环境中,安全性已经成为开发者必须重点关注的领域。 安全编程基础 🌟 💡 小知识:JavaScript安全编程涉及多个方…

[石榴翻译] 维吾尔语音识别 + TTS语音合成

API网址 丝路AI平台 获取 Access token 接口地址:https://open.xjguoyu.cn/api/auth/oauth/token,请求方式:GET,POST Access token是调用服务API的凭证,调用服务API之前需要获取 token。每次成功获取 token 以后只有…

解决 Git SSL 连接错误:OpenSSL SSL_read: SSL_ERROR_SYSCALL, errno

问题描述 在执行 git pull 命令时遇到以下错误: > git pull --tags origin main fatal: unable to access github仓库: OpenSSL SSL_read: SSL_ERROR_SYSCALL, errno 0这个错误通常表示 Git 在尝试通过 HTTPS 连接到 GitHub 时遇到了 SSL 连接问题。 解决方案…