学技术学英语:ELK是什么

embedded/2025/1/15 9:29:09/

📢📢📢: 先看关键单词,再看英文,最后看中文总结,再回头看一遍英文原文,效果更佳!!

关键词

aggregate

聚合

/ˈæɡrɪɡeɪt/

analytics

分析学

/ˌænəˈlɪtɪks/

destination

目的地

/ˌdɛstɪˈneɪʃən/

distributed

分布式的

/dɪˈstrɪbjutɪd/

elasticsearch

弹性搜索

/ɪˈlæstɪksɜːrtʃ/

ingestion

摄取

/ɪnˈdʒɛstʃən/

infrastructure

基础设施

/ˈɪnfrəˌstrʌktʃər/

integration

整合

/ˌɪntɪˈɡreɪʃən/

operational

操作的

/ˌɒpəˈreɪʃənəl/

pipeline

管道

/ˈpaɪplaɪn/

prebuilt

预构建的

/ˌpriːˈbɪlt/

schema

模式

/ˈskiːmə/

server-side

服务器端的

/ˈsɜːrvərˌsaɪd/

subset

子集

/ˈsʌbˌsɛt/

transform

转换

/trænsˈfɔːrm/

troubleshooting

故障排除

/ˈtruːblˌʃuːtɪŋ/

unstructured

非结构化的

/ʌnˈstrʌktʃərd/

visualization

可视化

/ˌvɪʒuəlɪˈzeɪʃən/

正文:

What is the ELKSTACK.html" title=ELK Stack>ELK Stack?

The ELK stack is an acronym used to describe a stack that comprises three popular projects: Elasticsearch, Logstash, and Kibana. Often referred to as Elasticsearch, the ELK stack gives you the ability to aggregate logs from all your systems and applications, analyze these logs, and create visualizations for application and infrastructure monitoring, faster troubleshooting, security analytics, and more.

E = Elasticsearch

Elasticsearch is a distributed search and analytics engine built on Apache Lucene. Support for various languages, high performance, and schema-free JSON documents makes Elasticsearch an ideal choice for various log analytics and search use cases. 

 

L = Logstash

Logstash is an open-source data ingestion tool that allows you to collect data from various sources, transform it, and send it to your desired destination. With prebuilt filters and support for over 200 plugins, Logstash allows users to easily ingest data regardless of the data source or type. 

Logstash is a lightweight, open-source, server-side data processing pipeline that allows you to collect data from various sources, transform it on the fly, and send it to your desired destination. It is most often used as a data pipeline for Elasticsearch, an open-source analytics and search engine. Because of its tight integration with Elasticsearch, powerful log processing capabilities, and over 200 prebuilt open-source plugins that can help you easily index your data, Logstash is a popular choice for loading data into Elasticsearch.

Easily load unstructured data

Logstash allows you to easily ingest unstructured data from various data sources including system logs, website logs, and application server logs. 

Prebuilt filters

Logstash offers prebuilt filters, so you can readily transform common data types, index them in Elasticsearch, and start querying without having to build custom data transformation pipelines.

Flexible plugin architecture

With over 200 plugins already available on GitHub, it is likely that someone has already built the plugin that you need to customize your data pipeline. But if one is not available that suits your requirements, you can easily create one yourself.

K = Kibana

Kibana is a data visualization and exploration tool used for log and time-series analytics, application monitoring, and operational intelligence use cases. It offers powerful and easy-to-use features such as histograms, line graphs, pie charts, heat maps, and built-in geospatial support. Also, it provides tight integration with Elasticsearch, a popular analytics and search engine, which makes Kibana the default choice for visualizing data stored in Elasticsearch.

Interactive charts

Kibana offers intuitive charts and reports that you can use to interactively navigate through large amounts of log data. You can dynamically drag time windows, zoom in and out of specific data subsets, and drill down on reports to extract actionable insights from your data.

Mapping support

Kibana comes with powerful geospatial capabilities, so you can seamlessly layer in geographical information on top of your data and visualize results on maps.

Prebuilt aggregations and filters

Using Kibana’s prebuilt aggregations and filters, you can run various analytics like histograms, top-N queries, and trends in just a few steps.

Easily accessible dashboards

You can easily set up dashboards and reports and share them with others. All you need is a browser to view and explore the data.

How does the ELK stack work?

  1. Logstash ingests, transforms, and sends the data to the right destination.
  2. Elasticsearch indexes, analyzes, and searches the ingested data.
  3. Kibana visualizes the results of the analysis.

What does the ELK stack do?

The ELK stack is used to solve a wide range of problems, including log analytics, document search, security information and event management (SIEM), and observability. It provides the search and analytics engine, data ingestion, and visualization.

总结:

  • ELKSTACK.html" title=ELK Stack>ELK Stack简介:

  • Elasticsearch (E):

    • 是一个分布式搜索和分析引擎,基于Apache Lucene。

    • 支持多种语言,高性能,适用于日志分析和搜索。

  • Logstash (L):

    • 一个开源数据摄取工具,能够从各种来源收集数据,转换数据并发送到指定目的地。

    • 提供超过200个插件,支持灵活的数据管道构建。

  • Kibana (K):

    • 数据可视化和探索工具,用于日志和时间序列分析、应用监控和运营智能。

    • 提供直观的图表和报告,支持地理空间数据展示,具有预建的聚合和过滤器。

  • ELKSTACK.html" title=ELK Stack>ELK Stack的工作原理:

  • ELKSTACK.html" title=ELK Stack>ELK Stack的用途:

    • 用于解决日志分析、文档搜索、安全信息和事件管理(SIEM)以及可观察性等问题。

    • 提供搜索和分析引擎、数据摄取以及数据可视化功能。


http://www.ppmy.cn/embedded/154072.html

相关文章

使用 Python 实现自动化办公(邮件、Excel)

目录 一、Python 自动化办公的准备工作 1.1 安装必要的库 1.2 设置邮件服务 二、邮件自动化处理 2.1 发送邮件 示例代码 注意事项 2.2 接收和读取邮件 示例代码 三、Excel 自动化处理 3.1 读取和写入 Excel 文件 示例代码 3.2 数据处理和分析 示例代码 四、综合…

数据预测2025年AI面试市场增幅超500%!

近年来,随着人工智能技术的迅猛发展,AI在各行各业的应用逐渐广泛,其中企业招聘领域也不例外。最新的数据显示,2025年AI面试市场将迎来前所未有的增长,预计增幅将超过500%。这一预测不仅揭示了AI技术在招聘领域的应用潜…

【2】WLC的接口有哪些?

1.简介 在传统的网络中,很多时候接口和端口是混用的概念,在这里,我们的接口和端口则需要区分来对待了,WLC上的端口有其自身的含义,而接口区分了很多的种类。 AireOS WLC的接口有AP管理接口(ap manager interface)、动态接口(dynamic interface)、虚拟接口(virtual …

unity 播放 序列帧图片 动画

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、方法一:代码控制播放序列帧1、设置图片属性2、创建Image组件3、简单的代码控制4、挂载代码并赋值 二、方法二:直接使用1.Image上添加…

机器学习顶会NeurIPS: AGILE: A Novel Reinforcement Learning Framework of LLM Agents

🌟 研究背景 🌟 随着大型语言模型(LLMs)在指令遵循、推理和零样本学习等方面展现出卓越的能力,基于LLMs的自主代理(LLM Agents)的研究逐渐兴起。然而,如何将规划、反思、工具使用等…

aws(学习笔记第二十四课) 使用sam开发step functions

aws(学习笔记第二十四课) 使用sam开发step functions 学习内容: 生成sam的step functions实例程序什么是SAM amazon Serverless Application ModelSAM程序结构SAM执行程序 1. 生成sam的step functions实例程序 参照文档 这里参照AWS的官方文档SAM amazon Serverl…

AI数字人PPT课件视频——探索新一代教学视频生成工具

引言 随着互联网技术的迅猛发展,在线教育已经从早期的电视教学,历经多媒体课程、微课和精品课的迭代。如今,面对AI技术的飞速进步,我们正站在一个新时代的门槛上——一种全新的内容生成工具正在革新在线教育的内容制作方式&#…

《拉依达的嵌入式\驱动面试宝典》—计算机网络篇(二)

《拉依达的嵌入式\驱动面试宝典》—计算机网络篇(二) 你好,我是拉依达。 感谢所有阅读关注我的同学支持,目前博客累计阅读 27w,关注1.5w人。其中博客《最全Linux驱动开发全流程详细解析(持续更新)-CSDN博客》已经是 Linux驱动 相关内容搜索的推荐首位,感谢大家支持。 《…