aws_0">aws(学习笔记第二十四课)
- 使用
sam
开发step functions
学习内容:
- 生成
sam
的step functions
实例程序 - 什么是
SAM amazon Serverless Application Model
SAM
程序结构SAM
执行程序
1. 生成sam
的step functions
实例程序
- 参照文档
这里参照AWS
的官方文档SAM amazon Serverless Application Model
- 什么是
SAM amazon Serverless Application Model
- 整体架构
SAM
就是一个基于Cloudformation
的应用程序框架,主要目的正如名字(Serverless Application Model
),方便进行Serverless Application
的开发。
开发的一般步骤如下:- 开发
lambda
等serverless application
。 - 利用
step functions
等serverless application
。当然,其中可以调用lambda
。 - 之后利用上面的
serverless application
,进行Cloudformation
的template
定义。 - 最后经过
sam build
和sam deploy
部署到AWS
的环境中。
- 开发
- 整体架构
3. SAM
程序结构
- 开始使用
SAM
- 这里使用
SAM
提供的实例程序进行练习HourlyTradingSchedule
是一个AWS EventBridge
的规则,这里定义了股票投资程序的调用周期。类似于linux
的cron job
。StockTradingStateMachine
就是股票交易的StateMachine
。- 股票交易的
StateMachine
里面包括三个lambda
StockCheckerFunction
这里随机产生股票的价格(进行简单的股票市场的模拟)- 中间其实有一个
choice state
,进行判断。这里没有画出来 - 之后根据判断,如果股票高过某个固定价格,那么进行
StockBuyerFunction
的调用 - 如果股票高过某个固定价格,那么进行
StockSellerFunction
的调用 - 最后,不管买还是卖的操作,都进行
TransactionTable
的写入(使用DynamoDB
记录交易)
- 进行实际代码的实验
- 实验环境
这里还是使用非常给力的工具CloudShell
。
- 构建代码
- 创建代码的父路径
mkdir demo-sam cd demo-sam
- 使用
sam
生成股票实例代码(这个代码是sam
自带的)
之后进行一些runtime
的相关设定。
到这里,代码就会被生成出来,而且cloudformation
的template
文件都是yaml
格式的。
- 创建代码的父路径
- 实验环境
- 将
cloudshell
环境中的代码通过S3
取到本地- 创建传输文件的
S3 bucket
因为cloudshell
不是很容易和本地传输文件,所以使用S3 bucket
。
- 将
SAM
代码打包,copy
到S3 bucket
tar zcvf demo-sam.tar.gz demo-sam/ aws s3 cp demo-sam.tar.gz s3://finlay-cloudshell/
- 将
SAM init
生成的实例程序代码,下载到本地
本地文件夹如下所示。
- 将
SAM init
生成的实例程序代码使用vscode
打开(这里单纯的可以更加容易编辑代码)template
文件
使用AWSTemplateFormatVersion: '2010-09-09' Transform: AWS::Serverless-2016-10-31 Description: |demo-samSample SAM Template for demo-samResources:StockTradingStateMachine:Type: AWS::Serverless::StateMachine # More info about State Machine Resource: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.htmlProperties:DefinitionSubstitutions:StockCheckerFunctionArn: !GetAtt StockCheckerFunction.ArnStockSellerFunctionArn: !GetAtt StockSellerFunction.ArnStockBuyerFunctionArn: !GetAtt StockBuyerFunction.ArnDDBPutItem: !Sub arn:${AWS::Partition}:states:::dynamodb:putItemDDBTable: !Ref TransactionTableEvents:HourlyTradingSchedule:Type: Schedule # More info about Schedule Event Source: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-property-statemachine-schedule.htmlProperties:Description: Schedule to run the stock trading state machine every hourEnabled: false # This schedule is disabled by default to avoid incurring charges.Schedule: rate(1 hour)Policies:# Find out more about SAM policy templates: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html- LambdaInvokePolicy:FunctionName: !Ref StockCheckerFunction- LambdaInvokePolicy:FunctionName: !Ref StockSellerFunction- LambdaInvokePolicy:FunctionName: !Ref StockBuyerFunction- DynamoDBWritePolicy:TableName: !Ref TransactionTableDefinitionUri: statemachine/stock_trader.asl.jsonStockCheckerFunction:Type: AWS::Serverless::Function # More info about Function Resource: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.htmlProperties:CodeUri: functions/stock_checker/Handler: app.lambda_handlerRuntime: python3.9Architectures:- x86_64StockSellerFunction:Type: AWS::Serverless::FunctionProperties:CodeUri: functions/stock_seller/Handler: app.lambda_handlerRuntime: python3.9Architectures:- x86_64StockBuyerFunction:Type: AWS::Serverless::FunctionProperties:CodeUri: functions/stock_buyer/Handler: app.lambda_handlerRuntime: python3.9Architectures:- x86_64TransactionTable:Type: AWS::Serverless::SimpleTable # More info about SimpleTable Resource: https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-simpletable.htmlProperties:PrimaryKey:Name: IdType: StringProvisionedThroughput:ReadCapacityUnits: 1WriteCapacityUnits: 1ApplicationResourceGroup:Type: AWS::ResourceGroups::GroupProperties:Name: !Sub ApplicationInsights-SAM-${AWS::StackName}ResourceQuery:Type: CLOUDFORMATION_STACK_1_0ApplicationInsightsMonitoring:Type: AWS::ApplicationInsights::ApplicationProperties:ResourceGroupName: !Ref ApplicationResourceGroupAutoConfigurationEnabled: 'true' Outputs:# StockTradingStateMachineHourlyTradingSchedule is an implicit Schedule event rule created out of Events key under Serverless::StateMachine# Find out more about other implicit resources you can reference within SAM# https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-specification-generated-resources.htmlStockTradingStateMachineArn:Description: Stock Trading State machine ARNValue: !Ref StockTradingStateMachineStockTradingStateMachineRoleArn:Description: IAM Role created for Stock Trading State machine based on thespecified SAM Policy TemplatesValue: !GetAtt StockTradingStateMachineRole.Arn
vscode
打开template
文件,可以看到AWS service
的图形化结构。
stock_checker
文件 随机产生stock
的价格from random import randintdef lambda_handler(event, context):"""Sample Lambda function which mocks the operation of checking the current price of a stock.For demonstration purposes this Lambda function simply returns a random integer between 0 and 100 as the stock price.Parameters----------event: dict, requiredInput event to the Lambda functioncontext: object, requiredLambda Context runtime methods and attributesReturns------dict: Object containing the current price of the stock"""# Check current price of the stockstock_price = randint(0, 100) # Current stock price is mocked as a random integer between 0 and 100return {"stock_price": stock_price}
stock_buyer
文件 如果价格低,选择买进from datetime import datetime from random import randint from uuid import uuid4def lambda_handler(event, context):"""Sample Lambda function which mocks the operation of buying a random numberof shares for a stock.For demonstration purposes, this Lambda function does not actually perform any actual transactions. It simply returns a mocked result.Parameters----------event: dict, requiredInput event to the Lambda functioncontext: object, requiredLambda Context runtime methods and attributesReturns------dict: Object containing details of the stock buying transaction"""# Get the price of the stock provided as inputstock_price = event["stock_price"]# Mocked result of a stock buying transactiontransaction_result = {"id": str(uuid4()), # Unique ID for the transaction"price": str(stock_price), # Price of each share"type": "buy", # Type of transaction (buy/sell)"qty": str(randint(1, 10)), # Number of shares bought/sold (We are mocking this as a random integer between 1 and 10)"timestamp": datetime.now().isoformat(), # Timestamp of the when the transaction was completed}return transaction_result
stock_seller
文件 如果价格高,选择抛出from datetime import datetime from random import randint from uuid import uuid4def lambda_handler(event, context):"""Sample Lambda function which mocks the operation of selling a random numberof shares for a stock.For demonstration purposes, this Lambda function does not actually perform any actual transactions. It simply returns a mocked result.Parameters----------event: dict, requiredInput event to the Lambda functioncontext: object, requiredLambda Context runtime methods and attributesReturns------dict: Object containing details of the stock selling transaction"""# Get the price of the stock provided as inputstock_price = event["stock_price"]# Mocked result of a stock selling transactiontransaction_result = {"id": str(uuid4()), # Unique ID for the transaction"price": str(stock_price), # Price of each share"type": "sell", # Type of transaction (buy/sell)"qty": str(randint(1, 10)), # Number of shares bought/sold (We are mocking this as a random integer between 1 and 10)"timestamp": datetime.now().isoformat(), # Timestamp of the when the transaction was completed}return transaction_result
step functions
文件 将上面的lambda
函数穿插起来,形成一个工作流程编排{"Comment": "A state machine that does mock stock trading.","StartAt": "Check Stock Value","States": {"Check Stock Value": {"Type": "Task","Resource": "${StockCheckerFunctionArn}","Retry": [{"ErrorEquals": ["States.TaskFailed"],"IntervalSeconds": 15,"MaxAttempts": 5,"BackoffRate": 1.5}],"Next": "Buy or Sell?"},"Buy or Sell?": {"Type": "Choice","Choices": [{"Variable": "$.stock_price","NumericLessThanEquals": 50,"Next": "Buy Stock"}],"Default": "Sell Stock"},"Sell Stock": {"Type": "Task","Resource": "${StockSellerFunctionArn}","Retry": [{"ErrorEquals": ["States.TaskFailed"],"IntervalSeconds": 2,"MaxAttempts": 3,"BackoffRate": 1}],"Next": "Record Transaction"},"Buy Stock": {"Type": "Task","Resource": "${StockBuyerFunctionArn}","Retry": [{"ErrorEquals": ["States.TaskFailed"],"IntervalSeconds": 2,"MaxAttempts": 3,"BackoffRate": 1}],"Next": "Record Transaction"},"Record Transaction": {"Type": "Task","Resource": "${DDBPutItem}","Parameters": {"TableName": "${DDBTable}","Item": {"Id": {"S.$": "$.id"},"Type": {"S.$": "$.type"},"Price": {"N.$": "$.price"},"Quantity": {"N.$": "$.qty"},"Timestamp": {"S.$": "$.timestamp"}}},"Retry": [{"ErrorEquals": ["States.TaskFailed"],"IntervalSeconds": 20,"MaxAttempts": 5,"BackoffRate": 10}],"End": true}} }
vscode
的sam
预览功能
- 创建传输文件的
- 回到
cloudshell
执行sam build
和sam deploy
部署到AWS
可以看到,本质上这个sam build sam deploy
sam application
还是使用Cloudformation
进行部署。
查看Cloudformation
进一步验证了想定结果。
- 这里使用
4. 执行sam
的step functions
实例程序
-
打开默认的
aws eventbridge
的规则设置
默认是禁用的,编辑这里,打开禁用。
-
查看执行结果
可以看出,已经成功执行一次
股票价格为2,执行了buy stock lambda