【机器人】机械臂位置、轨迹和转矩控制概要

embedded/2024/12/23 18:53:47/

仍旧以 RRR(三连杆)为例,实现控制,可以采用以下步骤。这里的控制包括

  1. 位置控制
  2. 轨迹控制 
  3. 轨迹跟踪控制

具体根据应用需求选择。以下是实现 RRR 机械臂控制的完整过程:


1. 定义机器人模型

通过 Denavit-Hartenberg (DH) 参数定义 RRR 机械臂的几何结构和动力学参数。以 MATLAB 的 Robotics Toolbox 为例:

% 定义连杆参数:theta, d, a, alpha
RRR_L(1) = Link([0 0 1 0], 'standard');
RRR_L(2) = Link([0 0 0.8 0], 'standard');
RRR_L(3) = Link([0 0 0.6 0], 'standard');% 创建机械臂模型
rrr_robot = SerialLink(RRR_L, 'name', 'RRR-Arm');

2. 控制目标

  • 正运动学: 通过关节角度计算末端位姿。
  • 逆运动学: 根据末端目标位置,计算需要的关节角度。
  • 动力学控制: 根据关节角度、速度和加速度,计算驱动力矩。

正运动学:

q = [30, 45, 60] * pi / 180;  % 关节角度 (弧度)
T = rrr_robot.fkine(q);       % 正运动学计算
disp(T);                      % 输出末端位姿

逆运动学:

target_pose = transl(1, 1, 0.5);  % 目标位置
mask = [1, 1, 0, 0, 0, 1];        % 指定要解的自由度
q_solution = rrr_robot.ikine(target_pose, 'mask', mask); % 求解关节角
disp(q_solution);                 % 输出关节角

3. 控制器设计

位置控制:

利用 PID 控制器将关节角度调整到目标值。

% 初始化
q_target = [30, 45, 60] * pi / 180;  % 目标关节角度
q_current = [0, 0, 0];               % 当前关节角度
q_error = q_target - q_current;      % 初始误差Kp = [10, 10, 10];  % 比例增益
Kd = [1, 1, 1];     % 微分增益
Ki = [0.1, 0.1, 0.1];  % 积分增益q_integral = [0, 0, 0];  % 误差积分for t = 0:0.01:5  % 仿真时间 5sq_error = q_target - q_current;  % 误差计算q_derivative = -q_error / 0.01; % 误差微分q_integral = q_integral + q_error * 0.01;  % 误差积分% PID 控制输出torque = Kp .* q_error + Kd .* q_derivative + Ki .* q_integral;% 更新关节角度(模拟)q_current = q_current + torque * 0.01;  % !!简化运动模型。这里可以用仿真更新,也可以接入实际的叫编码器的实际测量值!!!% 打印输出disp(q_current);
end

轨迹跟踪控制:

使用逆运动学计算轨迹中的每个姿态点,并控制关节跟随。

% 定义轨迹
time = 0:0.1:5;  % 时间段
x = 0.5 + 0.5 * cos(2 * pi * time / 5);
y = 0.5 + 0.5 * sin(2 * pi * time / 5);
z = 0.5 * ones(size(time));% 初始化
for i = 1:length(time)% 目标位姿target_pose = transl(x(i), y(i), z(i));% 求解逆运动学q_target = rrr_robot.ikine(target_pose, 'mask', mask);% 控制(位置控制可嵌入此处)rrr_robot.plot(q_target);
end

4. 动力学控制

通过动力学模型计算所需的关节力矩,驱动关节运动。

动力学模型:

% 目标加速度、速度和位置
q_target = [30, 45, 60] * pi / 180;
qd_target = [0, 0, 0];  % 速度
qdd_target = [0, 0, 0]; % 加速度% 重力矢量
grav = [0; -9.8; 0];% 计算力矩
tau = rrr_robot.rne(q_target, qd_target, qdd_target, grav);
disp(tau);  % 输出关节力矩

5. 仿真与可视化

使用 MATLAB 自带的功能进行运动仿真和可视化。

% 动画仿真,
q_start = [0, 0, 0];
q_end = [30, 45, 60] * pi / 180;[q_traj, qd_traj, qdd_traj] = jtraj(q_start, q_end, 50);  % 生成轨迹
rrr_robot.plot(q_traj);  %

6. 实际实现

在真实硬件上控制 RRR 机械臂,需要:

  1. 关节驱动:伺服电机或步进电机。
  2. 控制器:嵌入式系统(如 STM32 或 Arduino)。
  3. 传感器反馈:编码器或位置传感器。
  4. 将上述算法移植到嵌入式系统,并通过通信接口(如 CAN、EtherCAT)实现控制。

7. 注意&小结:

  • 这里没有接入动力学正解(或者说机器人仿真),这里给出的三种控制模式的控制思想架构。 之后,待笔者有时间,会继续更新。计划完善,动力学,系统参数辨识,完整控制仿真等。
  • 配置系统时,省略了动力学参数的配置。
  • 由于篇幅有限,下一节,会对比下转矩控制(torque control)和 P(I)D 位置控制。

http://www.ppmy.cn/embedded/148139.html

相关文章

uboot 打开log 的 方法

uboot 版本 commit f919c3a889f0ec7d63a48b5d0ed064386b0980bd (HEAD -> v2024.10, tag: v2024.10) Author: Tom Rini <trinikonsulko.com> Date: Mon Oct 7 08:54:35 2024 -0600 Prepare v2024.10 Signed-off-by: Tom Rini <trinikonsulko.com> 开启的选项…

【设计模式探索——智能遍历:如何用迭代器模式优化AI数据处理】

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” 文章目录 迭代器含义迭代器模式的优点迭代器的核心思想 世上本没有迭代器&#xff0c;不爽的人多了&#xff…

RHCE-第六章:DNS域名解析服务器

一、DNS简介 DNS&#xff08;Domain Name System&#xff09;是互联网上的一项服务&#xff0c;它作为将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便的访问互联网。 DNS系统使用的是网络的查询&#xff0c;那么自然需要有监听的port。DNS使用的是53端…

python--在服务器上面创建conda环境

今天刚开始使用服务器的时候使用上面的公共环境发现老师缺少模块&#xff0c; [guoyupingcins195 ~]$ conda --version Traceback (most recent call last): File "/home/miniconda3/bin/conda", line 12, in <module> from conda.cli import main Fil…

Harmonyos多线程之Worker基本使用

Harmonyos多线程之Worker基本使用 Worker的注意事项创建Worker的注意事项手动创建Worker线程自动创建Worker现成 跨har包加载Worker多级Worker的声明周期管理 Worker和宿主线程的通信 Worker主要作用是为应用程序提供一个多线程的运行环境&#xff0c;可满足应用程序在执行过程…

【进阶编程】MVC和MVVM实现前后端分离的实现

在 WPF 开发中&#xff0c;通常使用 MVVM&#xff08;Model-View-ViewModel&#xff09;架构来分离视图和业务逻辑&#xff0c;但在某些情况下&#xff0c;你可能希望将 MVC&#xff08;Model-View-Controller&#xff09;模式与 MVVM 结合使用。这种结合有时是为了兼顾不同的架…

spring注解

前面使用XML配置管理Spring虽然便于集中管理和维护&#xff0c;但是可能导致配置文件变得庞大且难以维护。特别是在处理复杂的配置关系时&#xff0c;XML配置可能会变得非常繁琐。使用注解可以以简洁直观的方式直接在类或方法上进行配置&#xff0c;减少了配置的冗余和错误&…

青少年编程与数学 02-004 Go语言Web编程 07课题、WebSockets

青少年编程与数学 02-004 Go语言Web编程 07课题、WebSockets 一、WebSocketsWebSockets 的特点&#xff1a;WebSockets 的工作流程&#xff1a;WebSockets 的应用场景&#xff1a; 二、Go Web应用中使用WebSockets1. 使用gorilla/websocket库2. 使用net/http包3. 其他库 三、示…