初试无监督学习 - K均值聚类算法

embedded/2024/11/22 11:39:40/

文章目录

  • 1. K均值聚类算法概述
  • 2. k均值聚类算法演示
    • 2.1 准备工作
    • 2.2 生成聚类用的样本数据集
    • 2.3 初始化KMeans模型对象,并指定类别数量
    • 2.4 用样本数据训练模型
    • 2.5 用训练好的模型生成预测结果
    • 2.6 输出预测结果
    • 2.7 可视化预测结果
  • 3. 实战小结

1. K均值聚类算法概述

  • K均值聚类算法是一种迭代的、基于中心的聚类方法,将数据点划分为K个簇。算法通过随机选择初始中心点,然后迭代地分配数据点到最近的簇中心,并更新簇中心为簇内所有点的均值,直到收敛或达到最大迭代次数。它简单、高效,适用于大规模数据集。

2. k均值聚类算法演示

2.1 准备工作

下面的代码导入数据处理和绘图库,设置绘图样式为seaborn-v0_8,格式化NumPy数组输出。

在这里插入图片描述
下面两行代码是Python中使用scikit-learn库进行聚类分析的准备工作:

  1. from sklearn.cluster import KMeans:这行代码从sklearn.cluster模块中导入KMeans类。KMeans是一种常用的聚类算法,用于将数据点分组成K个簇,使得簇内的点尽可能相似,簇间的点尽可能不同。

  2. from sklearn.datasets import make_blobs:这行代码从sklearn.datasets模块中导入make_blobs函数。make_blobs用于生成人造的聚类数据集,这些数据集由若干个“blobs”组成,每个“blob”是一个高密度的数据点集合,它们在特征空间中相对独立,适合用来测试和展示聚类技术的效果。

通常,这两行代码会用在数据分析或机器学习项目的开始阶段,为聚类任务做准备。
在这里插入图片描述

  • 什么是blobs?在机器学习和数据科学领域,“blobs” 这个词通常用来描述一种特定类型的数据集,这种数据集由聚类算法生成,用于测试和展示聚类技术的效果。“Blobs” 数据集包含若干个 “blob”,每个 “blob” 是一个高密度的数据点集合,它们在特征空间中相对独立。

  • 高斯分布:每个 “blob” 通常由高斯(正态)分布生成,这意味着数据点围绕中心点呈钟形分布。

  • 分离性:不同的 “blobs” 之间相对分离,这使得它们容易被聚类算法识别和分开。

  • 维度:“Blobs” 数据集可以是二维的,用于可视化,也可以是更高维度的,用于更复杂的分析。

2.2 生成聚类用的样本数据集

在这里插入图片描述

2.3 初始化KMeans模型对象,并指定类别数量

在这里插入图片描述

2.4 用样本数据训练模型

在这里插入图片描述

2.5 用训练好的模型生成预测结果

在这里插入图片描述

2.6 输出预测结果

在这里插入图片描述

2.7 可视化预测结果

在这里插入图片描述
一旦训练了如 KMeans之类的算法,它就可以预测新样本 ( 之前未见过的样本 ) 所属的类别。假设我们在描述银行潜在债务人和实际债务人的特征数据集上训练这种算法,它可以通过生成两个类别来了解潜在债务人的信誉度,将新的潜在债务人归类为两个类别之一:​“信誉良好”与“信誉不佳”。

3. 实战小结

通过本次实战,我们深入理解并应用了K均值聚类算法,这是一种广泛应用于数据科学领域的无监督学习方法。我们首先导入了必要的库,包括数据处理的NumPy、数据分析的Pandas以及数据可视化的Matplotlib,并设置了绘图样式以提升图表美观度。接着,我们利用make_blobs函数生成了模拟数据,为聚类分析提供了基础数据集。

在初始化KMeans模型时,我们指定了类别数量,这在实际应用中需要根据数据特性和业务需求来确定。通过训练模型并生成预测结果,我们成功地将数据点划分为不同的簇。最后,通过可视化预测结果,我们直观地展示了聚类效果,进一步验证了模型的准确性。

此外,我们还探讨了"blobs"的概念,即由聚类算法生成的高密度数据点集合,它们在特征空间中的相对独立性为聚类算法提供了理想的测试环境。通过本次实战,我们不仅掌握了K均值聚类算法的实现流程,还学会了如何通过数据可视化来评估聚类效果,为解决实际问题打下了坚实基础。


http://www.ppmy.cn/embedded/139616.html

相关文章

javaScript交互案例2

1、京东侧边导航条 需求: 原先侧边栏是绝对定位当页面滚动到一定位置,侧边栏改为固定定位页面继续滚动,会让返回顶部显示出来 思路: 需要用到页面滚动事件scroll,因为是页面滚动,所以事件源是document滚动…

兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景

在现代化的数据分析场景中,数据量以指数级速度快速膨胀,分析维度在不断扩展,查询逻辑的复杂度也在日益增加。从性能角度考虑,在承担高并发查询的压力下,秒级别甚至更快的响应速度已成为基本需求。同时,面对…

C# 5000 转16进制 字节(激光器串口通讯生成指定格式命令)

最近在做一个与激光器用串口进行通讯的程序文档中要求将频率参数以3个字节的方式进行发送。这里记录一下过程。以便以后再有类似问题时可以快速解决。 /// <summary>/// 设置频率/// </summary>/// <param name"sender"></param>/// <par…

hhdb数据库介绍(9-24)

计算节点参数说明 failoverAutoresetslave 参数说明&#xff1a; PropertyValue参数值failoverAutoresetslave是否可见是参数说明故障切换时&#xff0c;是否自动重置主从复制关系默认值falseReload是否生效否 参数设置&#xff1a; <property name"failoverAutor…

论文学习——基于协同进化和多样性增强的动态约束多目标优化算法

论文题目&#xff1a;Dynamic constrained multi-objective optimization algorithm based on co-evolution and diversity enhancement 基于协同进化和多样性增强的动态约束多目标优化算法&#xff08;Wang Che a,b, Jinhua Zheng a,b,∗, Yaru Hu a,b, Juan Zou a,b, Shengx…

php:nginx如何配置WebSocket代理?

在nginx配置中加入以下配置即可&#xff1a; server {listen 80;server_name test.com;# 配置 WebSocket 代理location /ws {proxy_pass http://127.0.0.1:8083;proxy_http_version 1.1;proxy_set_header Upgrade $http_upgrade;proxy_set_header Connection "upgrade&qu…

计算机网络(第一章)

文章目录 概述1.1计算机网络在信息时代的作用1.2因特网概述1. 网络,互连网(互联网)和因特网2. 因特网发展的三个阶段3.因特网的标准化工作4.因特网的组成 1.3 三种交换方式电路交换 (Circuit Switching)分组交换 (Packet Switching)报文交换 (Message Switching)三个交换的对比…

7 设计模式原则之合成复用原则

一、什么是合成复用原则&#xff1f; 1.定义&#xff1a; 要尽量使用对象组合&#xff08;组合关系&#xff09;来实现代码复用&#xff0c;而不是通过类继承&#xff08;继承关系&#xff09;来实现。 2.继承 vs. 组合 继承是一种“强耦合”的关系&#xff0c;子类会受父类的…