【MATLAB代码】基于IMM(Interacting Multiple Model)算法的目标跟踪,所用模型:CV、CA、CT

embedded/2024/11/21 15:14:21/

在这里插入图片描述

文章目录

  • 3个模型的IMM(代码简介)
  • 源代码
  • 运行结果
  • 代码介绍
  • 总结

3个模型的IMM(代码简介)

本MATLAB代码实现了基于IMM(Interacting Multiple Model算法目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。

源代码

只有一个m文件,如下:

matlab">% 基于IMM算法目标跟踪,三模型IMM
% 2024-09-21/Ver1
clc; clear; close all;  % 清除命令窗口、工作空间和关闭所有图形窗口
rng('default'); rng(0); % 设置随机数生成器的默认状态,以确保可重复性%% 仿真参数设置
time = 100;            % 仿真迭代次数
T = 1;                  % 采样间隔(时间步长)
w2 = 3 * 2 * pi / 360; % 模型2的转弯率(3度)
w3 = -3 * 2 * pi / 360; % 模型3的转弯率(-3度)
H = [1, 0, 0, 0;       % 模型量测矩阵0, 0, 1, 0];     
G = [T^2 / 2, 0;      % 模型过程噪声加权矩阵T, 0;0, T^2 / 2;0, T];  
R = 10 * diag([1, 1]); % 模型量测噪声协方差矩阵
Q = 0.1 * diag([1, 1]); % 模型过程噪声协方差矩阵
F1 = [1, T, 0, 0;     % 模型1状态转移矩阵(匀速直线运动)0, 1, 0, 0;0, 0, 1, T;0, 0, 0, 1];  
F2 = [1, sin(w2 * T) / w2, 0, (cos(w2 * T) - 1) / w2; % 模型2状态转移矩阵(左转弯)0, cos(w2 * T), 0, sin(w2 * T);0, (1 - cos(w2 * T)) / w2, 1, sin(w2 * T) / w2;0, -sin(w2 * T), 0, cos(w2 * T)];            
F3 = [1, sin(w3 * T) / w3, 0, (cos(w3 * T) - 1) / w3; % 模型3状态转移矩阵(右转弯)0, cos(w3 * T), 0, sin(w3 * T);0, (1 - cos(w3 * T)) / w3, 1, sin(w3 * T) / w3;0, -sin(w3 * T), 0, cos(w3 * T)];            % 完整代码和相关函数,见:https://gf.bilibili.com/item/detail/1106540012

运行结果

运行上述代码后,可以得到如下结果:

  • 目标的运动轨迹:
    在这里插入图片描述
    速度误差和位置误差:
    在这里插入图片描述

多模型的概率(左图是画在同一幅图上的,右图是画在不同的子图上的):
在这里插入图片描述

代码介绍

  1. 代码概述
    这段代码实现了基于 IMM(Interacting Multiple Model)算法目标跟踪。它使用三种不同的运动模型(匀速直线运动、左转弯和右转弯)来预测目标的位置,并通过卡尔曼滤波进行状态估计。

  2. 初始化部分

matlab">clc; clear; close all;  % 清除命令窗口、工作空间和关闭所有图形窗口
rng('default'); rng(0); % 设置随机数生成器的默认状态,以确保可重复性

这部分代码清理 MATLAB 环境并设置随机数种子,确保每次运行程序的结果一致。

  1. 仿真参数设置
matlab">time = 1000;            % 仿真迭代次数
T = 1;                  % 采样间隔(时间步长)
w2 = 3 * 2 * pi / 360; % 模型2的转弯率(3度)
w3 = -3 * 2 * pi / 360; % 模型3的转弯率(-3度)

这里定义了仿真所需的参数,包括时间步长和转弯率。H、G、R 和 Q 分别是量测矩阵、过程噪声加权矩阵、量测噪声协方差矩阵和过程噪声协方差矩阵。

  1. 状态转移矩阵定义
matlab">F1 = [...];  % 匀速直线运动
F2 = [...];  % 左转弯
F3 = [...];  % 右转弯

这部分定义了三种不同运动模型的状态转移矩阵,描述了如何从当前状态预测下一个状态。

  1. 生成量测数据
matlab">x = zeros(4, time);        % 状态数据矩阵
z = zeros(2, time);        % 含噪声量测数据

初始化状态和量测数据矩阵,并生成真实状态和含噪声的量测数据。通过循环,按照设定的时间段使用不同的运动模型更新目标状态。

  1. IMM 算法迭代
matlab">% 初始化
X_IMM = zeros(4, time);   % IMM算法模型综合状态估计值
P_IMM = zeros(4, 4, time); % IMM算法模型综合状态协方差矩阵

这部分代码初始化 IMM 算法的状态估计值和协方差矩阵,设置初始状态和模型转移概率矩阵。

  1. 迭代过程
matlab">for t = 1:time - 1% 第一部分 Interacting(只针对IMM算法c_j = pij' * u_IMM(:, t); % 计算混合概率的归一化因子...% 第二步 -- 卡尔曼滤波[x_CV, P_CV, r_CV, S_CV] = Kalman(...);...% 第三步 -- 模型概率更新[u_IMM(:, t + 1)] = Model_P_up(...);...% 第四步 -- 模型综合[X_IMM(:, t + 1), P_IMM(:, :, t + 1)] = Model_mix(...);
end

在这个迭代过程中,程序首先计算当前模型的混合概率,然后使用卡尔曼滤波器对每个模型的状态进行估计。接着更新模型的概率,并综合各模型的状态和协方差。

  1. 绘图部分
matlab">figure;
plot(z_true(1, :), z_true(2, :), 'DisplayName', '真实值');
...
title('目标运动轨迹'); % 图表标题
xlabel('x/m'); ylabel('y/m'); % 坐标轴标签
legend; % 添加图例

最后,程序生成多幅图表,展示目标运动轨迹、位置误差、速度误差以及模型概率的变化。这些图表帮助分析模型的跟踪性能。

  1. 函数定义
    程序中还定义了几个函数,例如 K a l m a n Kalman Kalman M o d e l _ m i x Model\_mix Model_mix M o d e l _ P _ u p Model\_P\_up Model_P_up,用于执行卡尔曼滤波、模型综合和模型概率更新。这些函数模块化了代码,使其更易于理解和维护。

总结

整体而言,这段代码展示了如何使用 IMM 算法结合卡尔曼滤波实现目标跟踪。通过不同的运动模型和状态估计,能够有效地预测目标的运动轨迹,并提供相应的误差分析。

如有需求,可通过问文末卡片联系作者


http://www.ppmy.cn/embedded/139366.html

相关文章

优选算法(双指针)

1.双指针介绍 双指针算法是一种常用的算法思想,特别适用于处理涉及阵列、链表或字符串等线性数据结构的问题。通过操作两个一个指针来进行导航或操作数据结构,双指针可以最大程度优化解决方案的效率。提高效率并减少空间复杂度。 在Java中使用双指针的核…

【蓝桥杯C/C++】翻转游戏:多种实现与解法解析

博客主页: [小ᶻZ࿆] 本文专栏: 蓝桥杯C/C 文章目录 💯题目💯问题分析解法一:减法法解法二:位运算解法解法三:逻辑非解法解法四:条件运算符解法解法五:数组映射法不同解法的比较…

ssm126基于HTML5的出租车管理系统+jsp(论文+源码)_kaic

设计题目:出租车管理系统的设计与实现 摘 要 网络技术和计算机技术发展至今,已经拥有了深厚的理论基础,并在现实中进行了充分运用,尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代,所以…

【网络系统管理】Centos7——配置主从mariadb服务器案例(下半部分)

【网络系统管理】Centos7——配置主从mariadb服务器案例-CSDN博客 接上个文档,我们已经完成了主服务器创建数据库备服务器可以看到 一、在DBMS2查看信息 File,Position这两个字段的数据要记好,等一下需要用到 show master status; 二、在…

python实战案例----使用 PyQt5 构建简单的 HTTP 接口测试工具

python实战案例----使用 PyQt5 构建简单的 HTTP 接口测试工具 文章目录 python实战案例----使用 PyQt5 构建简单的 HTTP 接口测试工具项目背景技术栈用户界面核心功能实现结果展示完整代码总结 在现代软件开发中,测试接口的有效性与响应情况变得尤为重要。本文将指导…

机器学习算法模型系列——Adam算法

Adam是一种自适应学习率的优化算法,结合了动量和自适应学习率的特性。 主要思想是根据参数的梯度来动态调整每个参数的学习率。 核心原理包括: 动量(Momentum):Adam算法引入了动量项,以平滑梯度更新的方向…

单片机_day8_时钟系统+定时器+PWM

目录 1.2 时钟源 1.3 STM32U5时钟源 1.4 时钟树 1.5 STM32CubeMX时钟树配置 2. Systick定时器 2.1 概念 2.2 工作原理 2.3 滴答定时器分析 3. TIM定时器 3.1 基本概念 3.2 STM32U5定时器 3.3 ​​​​​​​定时器框图 3.3.1 ​​​​​​​预分频器 3.3.2 ​​​​​​​…

php 使用mqtt

在 Webman 框架中使用 MQTT 进行消息的发布和订阅,你可以借助 PHP 的 MQTT 客户端库,比如 phpMQTT。以下是一个简单的示例,展示了如何在 Webman 中使用 MQTT 发布和订阅消息。 安装 phpMQTT 首先,你需要通过 Composer 安装 phpMQ…