【数据集】【YOLO】【目标检测】安全帽识别数据集 22789 张,YOLO安全帽佩戴目标检测实战训练教程!

embedded/2024/11/8 19:28:38/

数据集介绍

数据集安全帽识别数据集 22789 张目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:{'0': 'head', '1': 'helmet'},分别是无安全帽和佩戴安全帽。数据集来自国内外图片网站和视频截图。检测场景为施工地工人安全帽佩戴检测、厂房工人安全帽佩戴检测以及道路维修安全帽佩戴检测等,可用于智慧城市、智慧厂房、智慧工地、智慧工厂等,服务于保护人员安全、排查工厂安全隐患

一、数据概述

安全帽佩戴识别的重要性

在工业生产、建筑施工等高风险行业中,安全帽的佩戴是保障工人安全的重要措施。然而,由于施工现场环境复杂、人员流动性大,传统的人工巡检方式难以全面、高效地监管工人的安全帽佩戴情况。因此,如何实现安全帽佩戴的自动检测与识别,成为了一个亟待解决的问题。

实现原理

基于YOLO的安全帽佩戴识别算法,通过训练学习到安全帽的形状、颜色等特征,从而在图像中准确地检测出安全帽的位置。在检测阶段,将待检测的图像输入到训练好的模型中,模型会输出图像中安全帽的位置信息。此外,还可以结合可视化界面等技术手段,方便用户使用和查看检测结果。

基于YOLO的安全帽佩戴识别算法

  • 安全帽佩戴识别算法可以广泛应用于工地、石化、煤矿、港口、电力、油田等各行各业。
  • 通过实时监控和自动检测,可以及时发现未佩戴安全帽或佩戴不规范的行为,并通过声光警报、短信通知等方式提醒相关人员注意安全。
  • 辅助管理人员进行安全管理,提高生产效率和安全性。

该数据集含有22789张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试施工地工人安全帽佩戴检测、厂房工人安全帽佩戴检测以及道路维修安全帽佩戴检测等

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

二、数据集文件结构

safe_hat/

——Annotations/

————test/

————train/

————valid/

——images/

————test/

————train/

————valid/

——labels/

————test/

————train/

————valid/

——data.yaml

  • Annotations文件夹为Pascal VOC格式的XML文件 ;
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含安全帽佩戴识别的目标分类和加载路径。

其中Annotations、images、labels三个文件夹下是划分好的数据集,包含测试集test、训练集train以及验证集valid。 

三、数据集适用范围 

  • 目标检测场景
  • yolo训练模型或其他模型
  • 智慧城市、智慧厂房、智慧工地、智慧工厂等,服务于保护人员安全、排查工厂安全隐患
  • 施工地工人安全帽佩戴检测、厂房工人安全帽佩戴检测以及道路维修安全帽佩戴检测等

四、数据集标注结果 

1、数据集内容 

  1. 多角度场景:包含行人视角、俯视视角、监控视角、无人机视角;
  2. 标注内容:names: ['head', 'helmet'],总计2个分类。
  3. 图片总量:22789张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

五、训练过程

1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

3、数据集格式化处理

这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['head', 'helmet'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

4、修改数据集配置文件

train: ./images/train/
val: ./images/valid/# number of classes
nc: 2# class names
names: ['head', 'helmet']

5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) # Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frame# results = model(frame)results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)results[0].names[0] = "道路积水"# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output fileout.write(annotated_frame)# Display the annotated frame (optional)cv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

六、获取数据集 

戳我头像获取数据,或者主页私聊博主哈~

基于QT的目标检测可视化界面

一、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用说明

​​​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 三、预测效果展示

1、图片检测

​​​​​

切换置信度再次执行:

​​​​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

2、视频检测 

​​​​​

3、日志文本框

四、前端代码 

class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file"  # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)# 界面下半部分: 输出框 和 按钮groupBox = QtWidgets.QGroupBox(self)groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')bottomLayout = QtWidgets.QHBoxLayout(groupBox)main_layout.addWidget(groupBox)btnLayout = QtWidgets.QHBoxLayout()btn1Layout = QtWidgets.QVBoxLayout()btn2Layout = QtWidgets.QVBoxLayout()btn3Layout = QtWidgets.QVBoxLayout()# 创建日志打印文本框self.outputField = QtWidgets.QTextBrowser()self.outputField.setFixedSize(530, 180)self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)

五、代码获取

YOLO可视化界面

戳我头像获取数据,或者主页私聊博主哈~

注:以上均为原创内容,转载请私聊!!!


http://www.ppmy.cn/embedded/135973.html

相关文章

HTB:Nibbles[WriteUP]

目录 连接至HTB服务器并启动靶机 1.How many open TCP ports are listening on Nibbles? 使用nmap对靶机TCP端口进行开放扫描 2.What is the relative path on the webserver to a blog? 使用ffuf对靶机80端口Web进行路径FUZZ 3.What content management system (CMS) …

Spark 的介绍与搭建:从理论到实践

目录 一、分布式的思想 (一)存储 (二)计算 二、Spark 简介 (一)发展历程 (二)Spark 能做什么? (三)spark 的组成部分 (四&…

CSS中综合练习(基础学校完整静态网页教程)!!

#集合三行、多行多列、百分比布局做的基础学校完整静态网页# 一、百分比布局的使用 百分比的元素示例 <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"> <meta name"viewport" content"wi…

swoole进程

Master 进程、Reactor 线程、Worker 进程、Task 进程、Manager 进程的区别与联系 Master 进程 Master 进程是一个多线程进程Reactor 线程 Reactor 线程是在 Master 进程中创建的线程 负责维护客户端 TCP 连接、处理网络 IO、处理协议、收发数据 不执行任何 PHP 代码 将 TCP …

深入解析 WinForms MVVM 模式中的事件驱动与数据驱动

前言 在传统的 WinForms 开发中&#xff0c;事件驱动模型&#xff08;Event-Driven Model&#xff09;是核心&#xff0c;它通过控件的事件&#xff08;如点击按钮、改变文本等&#xff09;触发业务逻辑。然而&#xff0c;MVVM 模式引入了数据驱动&#xff08;Data-Driven&…

Java项目实战II基于Spring Boot的智能家居系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。 一、前言 随着物联网技术的快速发展和普及&#…

【NLP自然语言处理】深入探索Self-Attention:自注意力机制详解

目录 &#x1f354; Self-attention的特点 &#x1f354; Self-attention中的归一化概述 &#x1f354; softmax的梯度变化 3.1 softmax函数的输入分布是如何影响输出的 3.2 softmax函数在反向传播的过程中是如何梯度求导的 3.3 softmax函数出现梯度消失现象的原因 &…

学习正则表达式,如何校验手机号与电子邮箱

文章目录 一、正则表达式基础知识1.特殊字符&#xff08;Metacharacters&#xff09;2.字符类&#xff08;Character Classes&#xff09;3.预定义字符集&#xff08;Predefined character classes&#xff09;4.分组&#xff08;Groups&#xff09;5.量词&#xff08;Quantifi…