数据处理与统计分析篇-day08-apply()自定义函数与分组操作

embedded/2024/9/23 2:17:48/

一. 自定义函数

概述

  1. 当Pandas自带的API不能满足需求, 例如: 我们需要遍历的对Series中的每一条数据/DataFrame中的一列或一行数据做相同的自定义处理, 就可以使用Apply自定义函数

  2. apply函数可以接收一个自定义函数, 可以将Series对象的逐个值或DataFrame的行/列数据传递给自定义函数处理

  3. apply函数类似于编写一个for循环, 遍历行/列的每一个元素,但比使用for循环效率高很多

导包:

import numpy as np
import pandas as pd
import os
​
os.chdir(r'D:\CodeProject\03data_processing_analysis\teacher_project')  # 改变当前的工作目录.  change current work directory

apply()操作Series对象

apply()函数操作Series对象, 是把Series的逐个值进行传入并操作的.

# 1. 定义1个df对象.
df = pd.DataFrame({'a': [10, 20, 30], 'b': [20, 30, 40]})
df
​
# 2. 定义1个函数, 用于求 值 的 平方.  2 => 4,   5 => 25
def my_fun1(x):print('看看我执行了嘛!')return x ** 2
​
​
# 扩展: 定义函数, 计算x的e次方.
def my_fun2(x, e):return x ** e
​
# 3. 把上述的函数, 作用于 df对象的 a列值(Series对象)
df['a'].apply(my_fun1)  # 细节: 这里写的是函数名, 即: 函数对象.  如果写: 函数名() 则表示是在调用函数.
​
df.a.apply(my_fun2, e=3)  # 细节: 传参数时, 使用 关键字参数 写法进行传参.

apply()操作DF对象

df的apply(func, axis=)函数, 默认是传入整列值的, 而不是逐个值进行传入的.

源码解释axis参数:0 or index: apply function to each colum1 or columns: apply function to each row

解释:

axis = 0 按列传递数据 传入一列数据(Series)

axis = 1 按行传递数据 传入一列数据(Series)

df
df.apply(func1)     # 默认axis=0, 代表列, 即: 整列值传入
​
# 计算平均值,验证默认是传入整列值
def func3(x, y, z):return (x + y + z) / 3
​
# 报错,apply函数默认将df对象的整列作为参数传入
df.apply(func3)
​
def func4(x):print(x)print(type(x))df.apply(func4)
​
def func5(x):return x.mean()
​
df.apply(func5)             # 默认: axis=0(列)
df.apply(func5, axis=0)     # 效果同上
df.apply(func5, axis=1)     # 行 传入

函数向量化

def my_fun6(x, y):# 判断, 如果x的值是20, 就返回NaNif x == 20:         # 报错: x是向量, 20是标量, 向量和标量无法直接计算. return np.NAN# for i in x:#     if i == 20:         # 手动遍历, 就不报错了, 但是结果不是我们要的.#         return np.NAN# x代表第1列数据, y代表第2列数据return (x + y) / 2

在处理向量和标量时, 无法将向量直接和标量进行比较, 虽然手动用for循环遍历不会报错, 但是结果不对.

此时需要使用np.vectorize()函数, 将自定义函数向量化. 即: 如果遇到了向量, 则会逐个进行遍历, 获取标量并操作.

函数向量化的写法类似于装饰器的写法

# 定义函数, 接收df对象的两列数据, 计算每行的平均值@np.vectorize
@np.vectorize
def func6(x, y):# 判断, 如果x的值是20, 就返回NaNif x == 2:return np.NAN# x 第一列, y 第二列return (x + y) / 2
​
func6(df.a, df.b)
​
# 使用np.vectorize()函数, 将自定义函数进行向量化
func6 = np.vectorize(func6)
func6(df.a, df.b)

apply()结合lambda表达式

如果需求比较简单, 没有必要重新定义1个新的函数, 可以直接传入Lambda表达式.

# 1. 定义数据集.
df = pd.DataFrame({'a': [10, 20, 30], 'b': [20, 30, 40]})
df
#%%
# 2. 需求: 每个值 => 该值的平方.
def my_fun1(x):return x ** 2
​
df.apply(my_fun1)
#%%
# 3. 上述的需求可以用 Lambda表达式来完成.
df.apply(lambda x : x ** 2)
df.apply(lambda x : x.mean())
df.apply(lambda x : x.mean(), axis=0)   # 效果同上.
​
df.apply(lambda x : x.mean(), axis=1)   # 统计每行的平均值

apply()函数案例

加载数据

# 1. 加载数据集, 获取df对象.
train = pd.read_csv('data/titanic_train.csv')
train.head()
#%%
# 2. 查看数据集的 常用统计值.
train.info()
train.describe()
train
train.shape         # (891, 12)
len(train)          # 891 行数
train.size          # 891 * 12 = 10,772
​
len(train.Age)      # 891
train.Age.size      # 891

需求1:计算每列null总数, 缺失值占比, 非缺失值占比

# 1. 定义函数 count_missing(), 计算每列的缺失值总数
def count_missing(col):           # col => 每列数据, Series对象return col.isnull().sum()
​
# 2. 定义函数 prop_missing(), 计算每列的缺失值占比.
def prop_missing(col):# 缺失值占比 = 缺失值数量 / 该列总长度# return count_missing(col) / len(col)return count_missing(col) / col.size
​
# 3. 定义函数 prop_not_missing(), 计算每列的非缺失值占比.
def prop_not_missing(col):# 非缺失值占比 = 1 - 缺失值占比return 1 - prop_missing(col)
​
# 4. 调用上述的函数, 获取结果.
train.apply(count_missing)      # 获取每列的缺失值总数
train.apply(prop_missing)       # 获取每列的缺失值占比 
train.apply(prop_not_missing)   # 获取每列的非缺失值占比 

需求2: 计算泰坦尼克号数据中, 各年龄段总人数

# 方式1: 直接算每个年龄出现了多少次, 即: 每个年龄的总人数, 但是达不到我们要的效果.
train.Age.value_counts()
​
# 方式2:解题思路: 把年龄变成年龄段的值, 然后再进行统计.
# 1. 定义函数, 接收年龄, 将其转成年龄段. 
def cut_age(age):if 0 <= age < 18:return '未成年'elif 18 <= age < 40:return '青年'elif 40 <= age < 60:return '壮年'elif 60 <= age < 80:return '老年'else:return '未知'# 2. 把上述的函数, 作用于Age列, 得到新的列, 计算结果即可.
train.Age.apply(cut_age)
train.Age.apply(cut_age).value_counts()

需求3: 统计VIP 和 非VIP的客户总数

# VIP规则, 乘客船舱等级为1, 或者 名字中带有: 'Master', 'Sir', 'Dr'
def is_vip(rows):if rows.Pclass == 1 and ('Master' in rows.Name or 'Sir' in rows.Name or 'Dr' in rows.Name):return 'vip'else:return 'not_vip'
​
train.apply(is_vip, axis=1).value_counts()

二. 分组操作

分组 + 聚合

概述

  1. 在SQL中我们经常使用 GROUP BY 将某个字段,按不同的取值进行分组,

  2. pandas中也有groupby函数, 分组之后,每组都会有至少1条数据, 将这些数据进一步处理,

  3. 返回单个值的过程就是聚合,比如分组之后计算算术平均值, 或者分组之后计算频数,都属于聚

代码演示

导入数据
# 1. 读取数据, 获取df对象
df = pd.read_csv('data/gapminder.tsv', sep='\t')
df.head()
单变量
# 统计每年平均寿命
# 写法1
df.groupby('year')['lifeExp'].mean()
# 写法2
df.groupby('year').lifeExp.mean()
​
# 上述都是一步到位, 直接计算结果, 我们也可以手动计算. 
# 1. 我们先看看一共有多少个年
df.year.unique()  # 12个年份, 底层算 12 次即可, 这里我们就用 1952年举例.
​
# 2. 获取1952年所有的数据, 计算平均寿命
df[df['year'] == 1952].lifeExp.mean()
df[df.year == 1952].lifeExp.mean()  # 效果同上.
​
​
# 统计各大洲平均寿命
# 写法1
df.groupby('continent')['lifeExp'].mean()
​
# 分组之后, 也可以用 describe()同时计算多个统计量.
df.groupby('continent')['lifeExp'].describe()
​
# 写法2
df.groupby('continent')['lifeExp'].mean()
df.groupby('continent')['lifeExp'].agg('mean')  # 这里的mean是: pandas的函数
# df.groupby('continent')['lifeExp'].agg(np.mean)  # 这里的mean是: Numpy的函数
​
df.groupby('continent')['lifeExp'].aggregate('mean')  # 效果同上.
多变量agg
# 需求: 统计各个大洲 平均寿命, 人口的中位数, 最大GDP
df.groupby('continent').agg({'lifeExp': 'mean', 'pop': 'median', 'gdpPercap': 'max'})
df.groupby('continent').aggregate({'lifeExp': 'mean', 'pop': 'median', 'gdpPercap': 'max'})  # 效果同上
​
# 语法糖, 如果聚合函数一样, 则可以简写成如下操作, 例如: 各个大洲平均寿命, 平均人口, 平均GDP
df.groupby('continent').agg({'lifeExp': 'mean', 'pop': 'mean', 'gdpPercap': 'mean'})
df.groupby('continent')[['lifeExp', 'pop', 'gdpPercap']].mean()
自定义函数聚合运算
# 需求: 计算各个大洲的平均寿命
# 方式1: 使用Pandas的mean()函数.
df.groupby('continent').lifeExp.mean()
df.groupby('continent').lifeExp.agg('mean')
​
# 方式2: 使用自定义函数, 计算平均值.
# 1. 定义函数, 计算某列的平均值.
def my_mean(col):# 某列平均值 = 该列元素和 / 该列元素个数# return col.sum() / len(col)return col.sum() / col.size
​
​
# 2. 调用函数.
df.groupby('continent').lifeExp.apply(my_mean)
df.groupby('continent').lifeExp.agg(my_mean)

分组 + 转换

概述

  1. transform 需要把DataFrame中的值传递给一个函数, 而后由该函数"转换"数据。

  2. 即: aggregate(聚合) 返回单个聚合值,但transform 不会减少数据量。

  3. 分组转换跟SQL中的窗口函数中的聚合函数作用一样。可以把每一条数据和这个数据所属的组的一个聚合值在放在一起, 可以根据需求进行相应计算。

代码演示

计算x的z-score分数

计算x的 z-score分数, 也叫: 标准分数, 公式为: (x - x_mean) / x_std

# 1. 查看数据源
df
#%%
# 2. 定义函数, 计算某列的 z-score分数.
def my_zscore(col):return (col - col.mean()) / col.std()  # (列值 - 平均值) / 标准差
​
​
# 3. 调用上述的格式.
df.groupby('year').lifeExp.apply(my_zscore)  # 1704条
​
#%%
# 4. 查看原始df的数据集总数.
df  # 结论: 分组 + 转换处理后, 数据集总数不变.
分组填充
# 需求: 读取文件(小票信息), 获取df对象. 其中有1列 total_bill 表示总消费. 随机抽取4个缺失值, 然后进行填充. 
# 填充方式: 每个组的平均值. 即: 如果是Male => 就用 Male列的平均值填充, 如果是Female => Female列的平均值填充.
# 1. 读取文件, 获取DataFrame对象
df = pd.read_csv('data/tips.csv')
df
#%%
# 2. 抽样方式, 从上述的df对象中, 随机抽取10条数据. 
# tips_10 = df.sample(10)     # 这里的10表示随机抽取 10 条数据.
# random_state: 随机种子, 只要种子一样, 每次抽取的数值都是一样的. 
tips_10 = df.sample(10, random_state=21)
tips_10
#%%
# 3. 随机的从上述的10条数据中, 抽取4行数据, 设置他们的 total_bill(消费总金额) 为 NaN
# 写法1: 每次固定 这四条数据 的 total_bill为 空值.
# tips_10.loc[[173, 240, 243, 175], 'total_bill'] = np.NaN
​
# 写法2: 每次随机4条数据, 设置它们的 total_bill为 空值.
# np.random.permutation()解释: 随机打乱索引值, 并返回打乱后的索引值.
# np.random.permutation()[索引数] 打乱索引顺序, 返回固定索引数
tips_10.loc[np.random.permutation(tips_10.index)[:4], 'total_bill'] = np.NaN
tips_10
#%%
# 4. 分别计算 Male 和 Female 的平均消费金额, 用于填充对应组的 缺失值.
# 思路1: 直接用 整体的 总消费金额的 平均值 填充.
tips_10.fillna(tips_10.total_bill.mean())
#%%
# 思路2: 自定义函数, 计算每组的平均消费金额, 进行填充
def my_mean(col):# return col.sum() / col.size     # 某列总金额 / 某列元素个数,  这种写法会导致: 本组所有的数据都会被新值覆盖.return col.fillna(col.mean())     # 用该列的平均值, 来填充该列的缺失值, 其它不变.
​
# 调用上述函数, 实现: 分组填充, 即: 给我N条, 处理后, 还是返回N条数据.
# tips_10.groupby('sex').total_bill.apply(my_mean)      # n => 1  聚合的效果.
tips_10.groupby('sex').total_bill.transform(my_mean)    # n => n  类似于: MySQL的窗口函数的效果.
​
# df.groupby('sex').total_bill.transform(my_mean)    # n => n  类似于: MySQL的窗口函数的效果.

分组 + 过滤

概述

  1. 使用groupby方法还可以过滤数据

  2. 调用filter 方法,传入一个返回布尔值的函数,返回False的数据会被过滤掉

代码演示

# 1. 查看源数据
df
#%%
# 2. 查看用餐人数情况.
tmp_df = df.groupby('size', as_index=False).total_bill.count()
tmp_df.columns = ['size', 'count']
tmp_df
​
df.size     # 这样写, 会把 size当做 属性, 而不是 size列.
df['size'].value_counts()
#%%
# 3. 我们发现, 在所有的 消费记录中, 就餐人数 在 1, 5, 6个人的消费次数相对较少, 我们可以过滤掉这部分的数据
tmp_df = df.groupby('size').filter(lambda x : x['size'].count() > 30)
tmp_df
#%%
# 4. 验证上述筛选后的数据, size列只有 2, 3, 4 这三种就餐人数的情况.
tmp_df['size'].value_counts()
#%%
# 5. 上述代码的合并版, 一行搞定.
df.groupby('size').filter(lambda x : x['size'].count() > 30)['size'].value_counts()
​
# 另外一种筛选的方式, 可以基于: query()函数 + 筛选条件, 找出要的合法的数据. 
df.query('size == 2 or size == 3 or size == 4')
df.query('size in [2, 3, 4]')

DataFrameGroupby对象

概述

调用了groupby方法之后, 就会返回一个DataFrameGroupby对象

代码演示

# 1. 从小费数据中, 随机的获取10条数据.
tips_10 = pd.read_csv('data/tips.csv').sample(10, random_state=21)
tips_10
#%%
# 2. 演示 根据性别分组, 获取: 分组对象.
grouped = tips_10.groupby('sex')      # DataFrameGroupBy 对象
grouped
#%%
# 3. 遍历上述的分组对象, 看看每个分组都是啥(即: 每个分组的数据)
for sex_group in grouped:print(sex_group)        # sex_group: 就是具体的每个分组的数据. 
#%%
# 4. 获取指定的某个分组的数据.
grouped.get_group('Male')
grouped.get_group('Female')
#%%
# 5. 需求: 使用groupby() 按 性别 和 用餐时间分组, 计算小费数据的平均值. 
df.groupby(['sex', 'time']).tip.mean()
#%%
# 6. 分组对象不能使用 0 索引获取数据
grouped
# grouped[0]      # 分组对象不能使用 0 索引获取数据, 要获取数据, 可以通过  grouped.get_group() 函数实现
grouped.get_group(('Male'))


http://www.ppmy.cn/embedded/115349.html

相关文章

用Python提取PowerPoint演示文稿中的音频和视频

将多种格式的媒体内容进行重新利用&#xff08;如PowerPoint演示中的音频和视频&#xff09;是非常有价值的。无论是创建独立的音频文件、提取视频以便在线分发&#xff0c;还是为了未来的使用需求进行资料归档&#xff0c;从演示文稿中提取这些媒体文件可以为多媒体内容的多次…

API 接入前的安全防线:注意事项全梳理

在当今数字化的商业环境中&#xff0c;API&#xff08;Application Programming Interface&#xff09;的广泛应用为企业带来了诸多便利&#xff0c;但同时也伴随着潜在的安全风险。在接入 API 之前&#xff0c;构建坚实的安全防线至关重要。以下是对 API 接入前安全注意事项的…

达梦disql支持上翻历史命令-安装rlwrap

time:2024/09/18 Author:skatexg 一、背景 DM安装完成后使用disql命令行&#xff0c;无法使用上下键引用历史命令&#xff0c;会出现“[[A[[A”的现象。这样的操作包括使用退格Backspace键&#xff0c;上下键&#xff0c;左右键等。解决这个问题&#xff0c;可以使用rlwrap工…

Python练习宝典:Day 1 - 选择题 - 基础知识

目录 一、踏上Python之旅二、Python语言基础三、流程控制语句四、序列的应用 一、踏上Python之旅 1.想要输出 I Love Python,应该使用()函数。 A.printf() B.print() C.println() D.Print()2.Python安装成功的标志是在控制台(终端)输入python/python3后,命令提示符变为: A.&…

自监督的主要学习方法

自监督学习是一种机器学习方法&#xff0c;其中模型从未标注的数据中学习生成标签&#xff0c;通常通过构造预训练任务或预测任务来从数据的内部结构中提取信息。它的核心目标是利用无监督的数据进行学习&#xff0c;从而在下游任务中更好地利用监督信号。自监督学习的主要方法…

QNX Hypervisor(十)Linux Guest IPC 二

上文还遗留了一个问题,就是在测试ipc的时候挂死了。相关原理我写在了另外一篇文章。 内存管理 所以导致挂死的问题就是因为没有进行地址映射,mmu无法转换。从kernel代码看,只有ram区域才会进行映射。我们的qvmconf文件也确实没有配置0xb8000000,只配置了pass。 pass loc …

Flutter 踩坑记录分享(持续更新)

在使用 Flutter 进行开发的过程中&#xff0c;虽然它凭借其高效的跨平台能力和丰富的插件生态极大地提高了开发效率&#xff0c;但同时也遇到了一些棘手的问题和“坑”。在此分享一些我在实际开发中遇到的坑以及解决思路&#xff0c;供大家参考和借鉴。 1. just_audio 插件使用…

回归预测 | Matlab实现ReliefF-XGBoost多变量回归预测

回归预测 | Matlab实现ReliefF-XGBoost多变量回归预测 目录 回归预测 | Matlab实现ReliefF-XGBoost多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.ReliefF-xgboost回归预测代码&#xff0c;对序列数据预测性能相对较高。首先通过ReleifF对输入特征计算权…