数值分析复习:Richardson外推和Romberg算法

embedded/2024/10/18 16:48:59/

文章目录

    • Richardson外推
    • Romberg(龙贝格)算法

本篇文章适合个人复习翻阅,不建议新手入门使用
本专栏:数值分析复习 的前置知识主要有:数学分析、高等代数、泛函分析

本节继续考虑数值积分问题

Richardson外推

命题:复合梯形公式的另一形式
f ∈ C ∞ [ a , b ] f\in C^{\infty}[a,b] fC[a,b],记 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx ,将复合梯形公式记为
T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T(h)=2hi=0n1[f(xi)+f(xi+1)]

T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

其中 α l ( l = 1 , 2 , … ) \alpha_l(l=1,2,\dots) αl(l=1,2,) h h h 无关

证明
x i + 1 2 = x i + x i + 1 2 , i = 0 , 1 , … , n − 1 x_{i+\frac{1}{2}}=\frac{x_i+x_{i+1}}{2},i=0,1,\dots,n-1 xi+21=2xi+xi+1,i=0,1,,n1

考虑 f ( x ) f(x) f(x) x = x i + 1 2 x=x_{i+\frac{1}{2}} x=xi+21 处的Taylor展开公式
f ( x ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( x − x i + 1 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( x − x i + 1 2 ) 2 + ⋯ f(x)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(x-x_{i+\frac{1}{2}})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(x-x_{i+\frac{1}{2}})^2+\cdots f(x)=f(xi+21)+f(xi+21)(xxi+21)+2!f′′(xi+21)(xxi+21)2+

若对上述 Taylor 公式代入 x = x i , x = x i + 1 x=x_{i},x=x_{i+1} x=xi,x=xi+1,则得
f ( x i + 1 ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) h 2 + f ′ ′ ( x i + 1 2 ) 2 ! ( h 2 ) 2 + ⋯ f(x_{i+1})=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})\frac{h}{2}+\frac{f''(x_{i+\frac{1}{2}})}{2!}(\frac{h}{2})^2+\cdots f(xi+1)=f(xi+21)+f(xi+21)2h+2!f′′(xi+21)(2h)2+ f ( x i ) = f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) ( − h 2 ) + f ′ ′ ( x i + 1 2 ) 2 ! ( − h 2 ) 2 + ⋯ f(x_i)=f(x_{i+\frac{1}{2}})+f'(x_{i+\frac{1}{2}})(-\frac{h}{2})+\frac{f''(x_{i+\frac{1}{2}})}{2!}(-\frac{h}{2})^2+\cdots f(xi)=f(xi+21)+f(xi+21)(2h)+2!f′′(xi+21)(2h)2+

两式加和,得到
f ( x i ) + f ( x i + 1 ) 2 = f ( x i + 1 2 ) + h 2 8 f ′ ′ ( x i + 1 2 ) + ⋯ \frac{f(x_i)+f(x_{i+1})}{2}=f(x_{i+\frac{1}{2}})+\frac{h^2}{8}f''(x_{i+\frac{1}{2}})+\cdots 2f(xi)+f(xi+1)=f(xi+21)+8h2f′′(xi+21)+

等式两端求和,乘以 h h h 得到
T ( h ) = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 8 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (1) T(h)=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}})+\frac{h^3}{8}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 1 T(h)=hi=0n1f(xi+21)+8h3i=0n1f′′(xi+21)+(1)

另一方面,对Taylor公式从 x i x_i xi x i + 1 x_{i+1} xi+1 进行积分,得到
∫ x i x i + 1 f ( x ) d x = h ⋅ f ( x i + 1 2 ) + f ′ ( x i + 1 2 ) 2 [ ( h 2 ) 2 − ( − h 2 ) 2 ] + f ′ ′ ( x i + 1 2 ) 6 [ ( h 2 ) 3 − ( − h 2 ) 3 ] + ⋯ \int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\cdot f(x_{i+\frac{1}{2}})+\frac{f'(x_{i+\frac{1}{2}})}{2}[(\frac{h}{2})^2-(-\frac{h}{2})^2]+\frac{f''(x_{i+\frac{1}{2}})}{6}[(\frac{h}{2})^3-(-\frac{h}{2})^3]+\cdots xixi+1f(x)dx=hf(xi+21)+2f(xi+21)[(2h)2(2h)2]+6f′′(xi+21)[(2h)3(2h)3]+

等式两端求和得

I = ∑ i = 0 n − 1 ∫ x i x i + 1 f ( x ) d x = h ∑ i = 0 n − 1 f ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (2) I=\sum\limits_{i=0}^{n-1}\int_{x_i}^{x_{i+1}}f(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f(x_{i+\frac{1}{2}}) +\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}}) +\cdots\tag 2 I=i=0n1xixi+1f(x)dx=hi=0n1f(xi+21)+24h3i=0n1f′′(xi+21)+(2)

结合(1)(2)式,可得
T ( h ) = I + h 3 12 ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + ⋯ (3) T(h)=I+\frac{h^3}{12}\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\cdots\tag 3 T(h)=I+12h3i=0n1f′′(xi+21)+(3)

类似(2)式的推导,可得
∫ a b f ′ ′ ( x ) d x = h ∑ i = 0 n − 1 f ′ ′ ( x i + 1 2 ) + h 3 24 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ \int_a^bf''(x)\mathrm{d}x=h\sum\limits_{i=0}^{n-1}f''(x_{i+\frac{1}{2}})+\frac{h^3}{24}\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots abf′′(x)dx=hi=0n1f′′(xi+21)+24h3i=0n1f(4)(xi+21)+

结合 ∫ a b f ′ ′ ( x ) d x = f ′ ( b ) − f ′ ( a ) \int_a^bf''(x)\mathrm{d}x=f'(b)-f'(a) abf′′(x)dx=f(b)f(a),可将(3)式化为
T ( h ) = I + α 1 h 2 + h 5 c 4 ∑ i = 0 n − 1 f ( 4 ) ( x i + 1 2 ) + ⋯ T(h)=I+\alpha_1h^2+h^5c_4\sum\limits_{i=0}^{n-1}f^{(4)}(x_{i+\frac{1}{2}})+\cdots T(h)=I+α1h2+h5c4i=0n1f(4)(xi+21)+

重复上述操作,考虑 ∫ a b f ( 4 ) ( x ) d x \int_a^bf^{(4)}(x)\mathrm{d}x abf(4)(x)dx,消去 h 5 h^5 h5 的项,得到 h 4 h^4 h4 的项,继续重复操作,可得
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

定义:Richardson外推
从低阶精度格式的截断误差的渐近展开式出发,做简单线性计算从而得到高阶精度格式的方法称为Richardson外推

例:
考虑复合梯形公式 T ( h ) T(h) T(h) 满足的式子
T ( h ) = I + α 1 h 2 + α 2 h 4 + ⋯ + α l h 2 l + ⋯ T(h)=I+\alpha_1h^2+\alpha_2h^4+\cdots+\alpha_lh^{2l}+\cdots T(h)=I+α1h2+α2h4++αlh2l+

此时截断误差量级为 O ( h 2 ) O(h^{2}) O(h2)

取步长为 h 2 \frac{h}{2} 2h,则有
T ( h 2 ) = I + α 1 h 2 4 + α 2 h 4 16 + ⋯ + α l h 2 l 2 2 l + ⋯ T(\frac{h}{2})=I+\alpha_1\frac{h^2}{4}+\alpha_2\frac{h^4}{16}+\cdots+\alpha_l\frac{h^{2l}}{2^{2l}}+\cdots T(2h)=I+α14h2+α216h4++αl22lh2l+

结合这两个式子,消去 h 2 h^{2} h2项,得
4 T ( h 2 ) − T ( h ) 3 = I − 1 4 α 2 h 4 + ⋯ + α l 3 ( 1 2 2 l − 1 ) h 2 l + ⋯ \frac{4T(\frac{h}{2})-T(h)}{3}=I-\frac{1}{4}\alpha_2h^4+\cdots+\frac{\alpha_l}{3}(\frac{1}{2^{2l}}-1)h^{2l}+\cdots 34T(2h)T(h)=I41α2h4++3αl(22l11)h2l+
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h),且
T 1 ( h ) = I + β 2 h 4 + β 3 h 6 + ⋯ + β l h 2 l + ⋯ T_1(h)=I+\beta_2h^4+\beta_3h^6+\cdots+\beta^lh^{2l}+\cdots T1(h)=I+β2h4+β3h6++βlh2l+
若用 T 1 ( h ) T_1(h) T1(h) 估计 I I I ,则截断误差量级提高到 O ( h 4 ) O(h^{4}) O(h4)
类似地,可继续做……

注:只要截断误差可表示为 h h h 的幂级数,均可使用 Richardson外推提高精度

Romberg(龙贝格)算法

在上述对复合梯形公式的截断误差进行Richardson外推的过程中,记复合梯形公式 T 0 ( h ) = T ( h ) = h 2 ∑ i = 0 n − 1 [ f ( x i ) + f ( x i + 1 ) ] T_0(h)=T(h)=\frac{h}{2}\sum\limits_{i=0}^{n-1}[f(x_i)+f(x_{i+1})] T0(h)=T(h)=2hi=0n1[f(xi)+f(xi+1)]

加速一次(即进行一次Richardson外推)后的估计式记为
T 1 ( h ) = 4 T ( h 2 ) − T ( h ) 3 T_1(h)=\frac{4T(\frac{h}{2})-T(h)}{3} T1(h)=34T(2h)T(h)

记加速 n n n 次的估计式为 T n ( h ) T_n(h) Tn(h),则有递推式
T n ( h ) = 4 n 4 n − 1 T n − 1 ( h 2 ) − 1 4 n − 1 T n − 1 ( h ) T_n(h)=\frac{4^n}{4^n-1}T_{n-1}(\frac{h}{2})-\frac{1}{4^n-1}T_{n-1}(h) Tn(h)=4n14nTn1(2h)4n11Tn1(h)

若记 T m ( k ) = T m ( h 2 k ) , k = 0 , 1 , 2 , … T_m^{(k)}=T_m(\frac{h}{2^k}),k=0,1,2,\dots Tm(k)=Tm(2kh),k=0,1,2,,则有递推式
T n ( k ) = 4 n 4 n − 1 T n − 1 ( k + 1 ) − 1 4 n − 1 T n − 1 ( k ) T_n^{(k)}=\frac{4^n}{4^n-1}T_{n-1}^{(k+1)}-\frac{1}{4^n-1}T_{n-1}^{(k)} Tn(k)=4n14nTn1(k+1)4n11Tn1(k)

定理:
设被积函数 f ( x ) f(x) f(x) 充分光滑

  1. lim ⁡ k → ∞ T m ( k ) = I \lim\limits_{k\to\infty}T_m^{(k)}=I klimTm(k)=I
  2. lim ⁡ m → ∞ T m ( k ) = I \lim\limits_{m\to\infty}T_m^{(k)}=I mlimTm(k)=I

注:证明略去,第一个结论说明当节点数目无穷多时, T m ( k ) T_m^{(k)} Tm(k) 收敛于准确的积分值;第二个结论说明随着Richardson外推的进行, T m ( k ) T_m^{(k)} Tm(k) 也收敛于准确的积分值

上述递推式和收敛定理给出了如下的Romberg算法

定义:Romberg算法
对预先给定的精度 ε \varepsilon ε,求 I = ∫ a b f ( x ) d x I=\int_a^bf(x)\mathrm{d}x I=abf(x)dx 的近似值,算法如下:

初始取 k = 0 , m = 0 , h = b − a k=0,m=0,h=b-a k=0,m=0,h=ba

  1. 代入梯形公式,求 T 0 ( k ) ( k = 0 , 1 , 2 , … ) T_0^{(k)}(k=0,1,2,\dots) T0(k)(k=0,1,2,)
  2. 加速一次,由递推公式求 T 1 ( k ) T_1^{(k)} T1(k)
  3. 直至 ∣ T k ( 0 ) − T k − 1 ( 0 ) ∣ < ε |T_k^{(0)}-T_{k-1}^{(0)}|<\varepsilon Tk(0)Tk1(0)<ε,则取 T k ( 0 ) ≈ I T_{k}^{(0)}\approx I Tk(0)I

注:具体求解顺序如下表

在这里插入图片描述

参考书籍:《数值分析》李庆扬 王能超 易大义 编


http://www.ppmy.cn/embedded/10969.html

相关文章

关于agi中的Function Calling深入解析

接口(Interface) 两种常见接口&#xff1a; 1、人机交互接口&#xff0c;User Interface,简称UI 2、应用程序编程接口&#xff0c;Application Programming Interface,简称API 接口能【通】的关键&#xff0c;是两边都要遵守约定。 人要按照UI的设计来操作。UI的设计要符合…

目标检测——多模态人体动作数据集

一、重要性及意义 连续多模态人体动作识别检测的重要性及意义主要体现在以下几个方面&#xff1a; 首先&#xff0c;它极大地提升了人体动作识别的准确性和稳定性。由于人体动作具有复杂性和多样性&#xff0c;单一模态的数据往往难以全面、准确地描述动作的特征。而连续多模…

vue系统指令二

vue系统指令二 v-model:双向数据绑定 重点&#xff1a;双向数据绑定&#xff0c;只能用于表单元素&#xff0c;或者用于自定义组件。 之前的文章里&#xff0c;我们通过v-bind&#xff0c;给<input>标签绑定了data对象里的name属性。当data里的name的值发生改变时&#…

Kafka之日志存储详解

目录 1. 存储介质的速度常识 1.1 各个存储介质的速度层级图 1.2 速度层级描述 2. kafka日志文件目录结构 2.1 kafka日志文件目录描述 2.2 每个主题分区下的文件目录结构 3. 具体日志文件详解 3.1 ".index"文件 3.2 ”.timeindex“文件 3.3 ".log"…

Flutter-如何序列化和反序列化为json对象

在Flutter中&#xff0c;使用json_serializable可以帮助你自动地序列化和反序列化JSON数据。这通常通过json_serialization库实现&#xff0c;它基于Dart的源代码生成功能。以下是如何在Flutter中使用json_serializable的步骤&#xff1a; 1.添加依赖&#xff1a; 首先&#…

cdh cm界面HDFS爆红:不良 : 该 DataNode 当前有 1 个卷故障。 临界阈值:任意。(Linux磁盘修复)

一、表现 1.cm界面 报错卷故障 检查该节点&#xff0c;发现存储大小和其他节点不一致&#xff0c;少了一块物理磁盘 2.查看该磁盘 目录无法访问 dmesg检查发现错误 dmesg | grep error二、解决办法 移除挂载 umount /data10 #可以移除挂载盘&#xff0c;或者移除挂载目…

ROS_第一个程序_Hello_world

ROS的第一个项目&#xff1a;输出Hello World 我们将学习如何创建一个简单的ROS&#xff08;Robot Operating System&#xff09;项目&#xff0c;该项目将在终端中输出"Hello World"。我们将使用Python语言进行编程。 环境准备 首先&#xff0c;确保你的计算机已…

Springboot+Vue项目-基于Java+MySQL的在线文档管理系统(附源码+演示视频+LW)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;Java毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计 &…