轨迹优化 | 图解欧氏距离场与梯度场算法(附ROS C++/Python实现)

devtools/2024/9/25 13:06:17/

目录

  • 0 专栏介绍
  • 1 什么是距离场?
  • 2 欧氏距离场计算原理
  • 3 双线性插值与欧式梯度场
  • 4 仿真实现
    • 4.1 ROS C++实现
    • 4.2 Python实现

0 专栏介绍

🔥课程设计、毕业设计、创新竞赛、学术研究必备!本专栏涉及更高阶的运动规划算法实战:曲线生成与轨迹优化、碰撞模型与检测、多智能体群控、深度强化学习运动规划、社会性导航、全覆盖路径规划等内容,每个模型都包含代码实现加深理解。

🚀详情:运动规划实战进阶


1 什么是距离场?

距离场(Distance Field)也称为距离变换(Distance Transform),在图像处理和模式识别中是一种重要工具,其核心思想是将图像中每个像素点的值表示为到最近的目标像素的距离度量,更高维的情况依次类推。在计算机视觉领域,距离场是图像分割和配准的基础,在运动规划中则常用于地图建模(广义Voronoi图计算)和轨迹梯度优化。

在这里插入图片描述

给定点集 G \mathcal{G} G和其上的目标点集 Q ⊆ G Q\subseteq \mathcal{G} QG,可以定义函数

D I ( p ) = min ⁡ q ∈ G ( d ( p , q ) + I ( q ) ) \mathcal{D} _I\left( p \right) =\min _{q\in \mathcal{G}}\left( d\left( p,q \right) +I\left( q \right) \right) DI(p)=qGmin(d(p,q)+I(q))

计算任意一点 p p p Q Q Q的最近距离,其中距离度量 d ( ⋅ , ⋅ ) d\left( \cdot ,\cdot \right) d(,)定义了距离场的属性,指示函数

I Q ( q ) = { 0 , i f q ∈ Q ∞ , o t h e r w i s e I_Q\left( q \right) =\begin{cases} 0, \mathrm{if} q\in Q\\ \infty , \mathrm{otherwise}\\\end{cases} IQ(q)={0,ifqQ,otherwise

常用的 d ( ⋅ , ⋅ ) d\left( \cdot ,\cdot \right) d(,)

  • 欧氏距离,此时称为欧氏距离变换(Euclidean Distance Transform, EDT)
  • 曼哈顿距离,此时称为曼哈顿距离变换(Manhattan Distance Transform, MDT)
  • 切比雪夫距离,此时称为切比雪夫距离变换(Chebyshev Distance Transform, CDT)

2 欧氏距离场计算原理

n n n维距离场可以通过一维距离场迭代计算得到,因此只需要讨论一维EDT的计算即可。如下图左侧所示为初始计算轴的EDT计算,右侧所示为更一般的情况,此时障碍物处的采样函数叠加了前轴计算信息。

在这里插入图片描述

注意到 O \mathcal{O} O定义了一系列以障碍物 q ∈ O q\in \mathcal{O} qO为顶点的抛物线,而 ∀ p ∈ G \forall p\in \mathcal{G} pG在系列抛物线形成的下包络的投影组成了距离场 D f ( p ) \mathcal{D} _f\left( p \right) Df(p),而下包络的计算与抛物线交点有关。联立两条抛物线 ( s − q ) 2 + f ( q ) = ( s − r ) 2 + f ( r ) \left( s-q \right) ^2+f\left( q \right) =\left( s-r \right) ^2+f\left( r \right) (sq)2+f(q)=(sr)2+f(r)可得

s = ( f ( r ) + r 2 ) − ( f ( q ) + q 2 ) 2 r − 2 q s=\frac{\left( f\left( r \right) +r^2 \right) -\left( f\left( q \right) +q^2 \right)}{2r-2q} s=2r2q(f(r)+r2)(f(q)+q2)

即任意两条抛物线有且仅有一个交点 s s s。设 K \mathcal{K} K为实际组成下包络的抛物线集合, v ( k ) v\left( k \right) v(k)表示其中第 k k k条抛物线的顶点, z ( k ) z\left( k \right) z(k)表示第 k k k条和第 k − 1 k-1 k1条抛物线的交点,区间 [ z ( k ) , z ( k + 1 ) ) \left[ z\left( k \right) ,z\left( k+1 \right) \right) [z(k),z(k+1))表示第 k k k条抛物线的下包络范围。在遍历求解下包络过程中,对于新的抛物线 e e e,其与 K \mathcal{K} K中最新的一条抛物线 k k k的交点 s s s有两种情况:

  • s > z ( k ) s>z\left( k \right) s>z(k),则将 e e e添加到 K \mathcal{K} K中并更新 v ( k ) v\left( k \right) v(k) z ( k ) z\left( k \right) z(k)
  • s ⩽ z ( k ) s\leqslant z\left( k \right) sz(k),则第 k k k条抛物线不参与构成下包络,应从 K \mathcal{K} K中删除并重新计算 e e e与新的第 k k k条抛物线的交点直至 s s s z ( k ) z(k) z(k)右侧;

算法流程如表所示

在这里插入图片描述

3 双线性插值与欧式梯度场

在求解梯度过程中,需要计算离散距离场的线性插值函数。以二维环境的双线性插值为例,设已知离散空间有四点坐标为 A ( x 1 , y 1 ) A\left( x_1,y_1 \right) A(x1,y1) B ( x 2 , y 1 ) B\left( x_2,y_1 \right) B(x2,y1) C ( x 1 , y 2 ) C\left( x_1,y_2 \right) C(x1,y2) D ( x 2 , y 2 ) D\left( x_2,y_2 \right) D(x2,y2),对其中任意一点 P P P,首先在 x x x方向上插值

{ f ( R 1 ) = f ( x , y 1 ) = x 2 − x x 2 − x 1 f ( A ) + x − x 1 x 2 − x 1 f ( B ) f ( R 2 ) = f ( x , y 2 ) = x 2 − x x 2 − x 1 f ( C ) + x − x 1 x 2 − x 1 f ( D ) \begin{cases} f\left( R_1 \right) =f\left( x,y_1 \right) =\frac{x_2-x}{x_2-x_1}f\left( A \right) +\frac{x-x_1}{x_2-x_1}f\left( B \right)\\ f\left( R_2 \right) =f\left( x,y_2 \right) =\frac{x_2-x}{x_2-x_1}f\left( C \right) +\frac{x-x_1}{x_2-x_1}f\left( D \right)\\\end{cases} {f(R1)=f(x,y1)=x2x1x2xf(A)+x2x1xx1f(B)f(R2)=f(x,y2)=x2x1x2xf(C)+x2x1xx1f(D)

再基于插值点 R 1 R_1 R1 R 2 R_2 R2进行 y y y方向的插值

f ( P ) = f ( x , y ) = y 2 − y y 2 − y 1 f ( R 1 ) + y − y 1 y 2 − y 1 f ( R 2 ) f\left( P \right) =f\left( x,y \right) =\frac{y_2-y}{y_2-y_1}f\left( R_1 \right) +\frac{y-y_1}{y_2-y_1}f\left( R_2 \right) f(P)=f(x,y)=y2y1y2yf(R1)+y2y1yy1f(R2)

展开可得矩阵形式

f ( x , y ) = 1 ( x 2 − x 1 ) ( y 2 − y 1 ) [ x 2 − x x − x 1 ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ y 2 − y y − y 1 ] f\left( x,y \right) =\frac{1}{\left( x_2-x_1 \right) \left( y_2-y_1 \right)}\left[ \begin{array}{c} x_2-x\\ x-x_1\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} y_2-y\\ y-y_1\\\end{array} \right] f(x,y)=(x2x1)(y2y1)1[x2xxx1]T[f(A)f(B)f(C)f(D)][y2yyy1]

在这里插入图片描述

对于离散栅格坐标而言, x 2 − x 1 = y 2 − y 1 = 1 x_2-x_1=y_2-y_1=1 x2x1=y2y1=1,设 Δ x = x − x 1 \varDelta x=x-x_1 Δx=xx1 Δ y = y − y 1 \varDelta y=y-y_1 Δy=yy1,则插值函数简化为

f ( Δ x , Δ y ) = [ 1 − Δ x Δ x ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ 1 − Δ y Δ y ] f\left( \varDelta x,\varDelta y \right) =\left[ \begin{array}{c} 1-\varDelta x\\ \varDelta x\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} 1-\varDelta y\\ \varDelta y\\\end{array} \right] f(Δx,Δy)=[1ΔxΔx]T[f(A)f(B)f(C)f(D)][1ΔyΔy]

则函数 f f f在任意一点的梯度为

∇ f ( Δ x , Δ y ) = [ ∂ f ( Δ x , Δ y ) ∂ Δ x ∂ f ( Δ x , Δ y ) ∂ Δ y ] = [ [ − 1 1 ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ 1 − Δ y Δ y ] [ 1 − Δ x Δ x ] T [ f ( A ) f ( C ) f ( B ) f ( D ) ] [ − 1 1 ] ] \nabla f\left( \varDelta x,\varDelta y \right) =\left[ \begin{array}{c} \frac{\partial f\left( \varDelta x,\varDelta y \right)}{\partial \varDelta x}\\ \frac{\partial f\left( \varDelta x,\varDelta y \right)}{\partial \varDelta y}\\\end{array} \right] =\left[ \begin{array}{c} \left[ \begin{array}{c} -1\\ 1\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} 1-\varDelta y\\ \varDelta y\\\end{array} \right]\\ \left[ \begin{array}{c} 1-\varDelta x\\ \varDelta x\\\end{array} \right] ^T\left[ \begin{matrix} f\left( A \right)& f\left( C \right)\\ f\left( B \right)& f\left( D \right)\\\end{matrix} \right] \left[ \begin{array}{c} -1\\ 1\\\end{array} \right]\\\end{array} \right] f(Δx,Δy)=[Δxf(Δx,Δy)Δyf(Δx,Δy)]=[11]T[f(A)f(B)f(C)f(D)][1ΔyΔy][1ΔxΔx]T[f(A)f(B)f(C)f(D)][11]

4 仿真实现

ROS_C_75">4.1 ROS C++实现

核心代码如下所示

GradientLayer::updateCosts(nav2_costmap_2d::Costmap2D & master_grid, int min_i, int min_j,int max_i,int max_j)
{if (!enabled_) {return;}unsigned char * master_array = master_grid.getCharMap();unsigned int size_x = master_grid.getSizeInCellsX(), size_y = master_grid.getSizeInCellsY();// Fixing window coordinates with map size if necessary.min_i = std::max(0, min_i);min_j = std::max(0, min_j);max_i = std::min(static_cast<int>(size_x), max_i);max_j = std::min(static_cast<int>(size_y), max_j);// Simply computing one-by-one cost per each cellint gradient_index;for (int j = min_j; j < max_j; j++) {// Reset gradient_index each time when reaching the end of re-calculated window// by OY axis.gradient_index = 0;for (int i = min_i; i < max_i; i++) {int index = master_grid.getIndex(i, j);// setting the gradient costunsigned char cost = (LETHAL_OBSTACLE - gradient_index*GRADIENT_FACTOR)%255;if (gradient_index <= GRADIENT_SIZE) {gradient_index++;} else {gradient_index = 0;}master_array[index] = cost;}}
}

4.2 Python实现

欧氏距离场核心代码

def compute(self, f_get, mat: np.ndarray, dim: int) -> np.array:"""Compute distance field along one-dimension baseon sample funciton f_get.Parameters:f_get (function): sample functionmat (np.ndarray): the matrix to transformdim (int): the dimension to transformReturns:df (np.array): the distance field along dim-dimension"""# initialzationk = 0n = mat.shape[dim]v, z = [0 for _ in range(n)], [0 for _ in range(n + 1)]z[0], z[1] = -self.INF, self.INF# envelopefor q in range(1, n):s = ((f_get(v[k]) + v[k] ** 2) - (f_get(q) + q ** 2)) / (2 * (v[k] - q))while s <= z[k]:k -= 1s = ((f_get(v[k]) + v[k] ** 2) - (f_get(q) + q ** 2)) / (2 * (v[k] - q))k += 1v[k] = qz[k], z[k + 1] = s, self.INF# distance calculationk = 0edf = np.zeros((n, ))for q in range(n):while z[k + 1] < q:k += 1edf[q] = (q - v[k]) ** 2 + f_get(v[k])return edf

欧氏梯度场核心代码:

def gradient(self, df: np.ndarray, x: float, y: float) -> np.array:"""To obtain the gradient at (x, y) in the distance field through bilinear interpolation.Parameters:df (np.ndarray): the distance fieldx/y (float): the query coordinateReturns:g(x, y): the gradient at (x, y)"""m, n = df.shapex, y = max(min(n - 1, x), 0), max(min(m - 1, y), 0)xi, yi = int(x), int(y)dx, dy = x - xi, y - yixi, yi = max(min(n - 1, xi), 0), max(min(m - 1, yi), 0)xp, yp = max(min(n - 1, xi + 1), 0), max(min(m - 1, yi - 1), 0)bl, br = df[yi, xi], df[yi, xp]tl, tr = df[yp, xi], df[yp, xp]return np.array([(1 - dy) * (br - bl) + dy * (tr + tl),-((1 - dx) * (tl - bl) + dx * (tr - br))])

效果如下所示
在这里插入图片描述

一个实际地图的案例如下

在这里插入图片描述

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏

  • ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

http://www.ppmy.cn/devtools/51169.html

相关文章

卫星地图导航的思路

一、背景情况 1、当前卫星定位系统很发达。 2、通过人造卫星定位系统&#xff0c;用一颗卫星无线导航芯片就能实时获取当前的经纬和高度坐标。 3、各大地图导航厂商通过实地定位测绘建筑物和各种交通设施的位置&#xff0c;创建电子地图&#xff0c;就能根据卫星终端实时定位…

SSH概念、用途、详细使用方法

还是大剑师兰特&#xff1a;曾是美国某知名大学计算机专业研究生&#xff0c;现为航空航海领域高级前端工程师&#xff1b;CSDN知名博主&#xff0c;GIS领域优质创作者&#xff0c;深耕openlayers、leaflet、mapbox、cesium&#xff0c;canvas&#xff0c;webgl&#xff0c;ech…

AI预测福彩3D采取888=3策略+和值012路或胆码测试6月15日新模型预测第5弹

今天咱们继续验证新模型的8码定位3&#xff0c;目前新模型新算法8码定位经过4次测试&#xff0c;已命中3次&#xff0c;9码定位连续命中4次。咱们重点是预测8码定位3&#xff0b;和值012胆码。有些朋友看到我最近几篇文章没有给大家提供缩水后的预测详情&#xff0c;在这里解释…

Excel中多条件判断公式怎么写?

在Excel里&#xff0c;这种情况下的公式怎么写呢&#xff1f; 本题有两个判断条件&#xff0c;按照题设&#xff0c;用IF函数就可以了&#xff0c;这样查看公式时逻辑比较直观&#xff1a; IF(A2>80%, 4, IF(A2>30%, 8*(A2-30%),0)) 用IF函数写公式&#xff0c;特别是当…

IDEA 设置主题、背景图片、背景颜色

一、设置主题 1、点击菜单 File -> Settings : 点击 Settings 菜单 2、点击 Editor -> Color Scheme -> Scheme, 小哈的 IDEA 版本号为 2022.2.3 , 官方默认提供了 4 种主题&#xff1a; Classic Light &#xff08;经典白&#xff09; ;Darcula &#xff08;暗黑主…

最大连续子序列和问题详解

最大连续子序列和问题如下&#xff1a;给定一个数字序列&#xff0c;求i,j&#xff0c;使得最大&#xff0c;输出这个最大和。 这个问题如果用暴力来做&#xff0c;枚举左端点和右端点&#xff0c;需要的复杂度&#xff0c;而计算需要的复杂度&#xff0c;因此总时间复杂度为。…

【C++】C/C++内存管理

C/C内存管理 C/C内存分布C语言中的内存管理方式C中内存管理方式内置类型自定义类型 operator new和operator delete函数new和delete实现原理定位new表达式&#xff08;placement-new&#xff09;malloc/free与new/delete的区别内存泄漏何为内存泄漏内存泄漏的分类如何检测内存泄…

opencv 通过滑动条调整阈值处理、边缘检测、轮廓检测、模糊、色调调整和对比度增强参数 并实时预览效果

使用PySimpleGUI库创建了一个图形用户界面(GUI),用于实时处理来自OpenCV摄像头的图像。它允许用户应用不同的图像处理效果,如阈值处理、边缘检测、轮廓检测、模糊、色调调整和对比度增强。用户可以通过滑动条调整相关参数。 完整代码在文章最后,可以运行已经测试; 代码的…