3d投影到2d python opencv

devtools/2025/3/6 3:32:42/

目录

cv2.projectPoints 投影

矩阵计算投影


cv2.projectPoints 投影

cv2.projectPoints() 是 OpenCV 中的一个函数,用于将三维空间中的点(3D points)投影到二维图像平面上。这在计算机视觉中经常用于相机标定、物体姿态估计、3D物体与2D图像之间的映射等场景。

函数原型:
cv2.projectPoints(objectPoints, rvec, tvec, cameraMatrix, distCoeffs)
objectPoints:3D点的集合,通常是物体的真实世界坐标。
rvec:旋转向量,表示物体相对于相机的旋转。
tvec:平移向量,表示物体相对于相机的位置。
cameraMatrix:相机的内参矩阵,通常通过相机标定得到。
distCoeffs:相机的畸变系数,通常是由相机标定得到的。

import cv2
import numpy as np# 定义 3D 点(假设这些点在一个立方体的表面上)
object_points = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 定义相机内参矩阵
camera_matrix = np.array([[1000, 0, 320],  # fx, 0, cx[0, 1000, 240],  # 0, fy, cy[0, 0, 1]  # 0, 0, 1
], dtype=np.float32)# 定义畸变系数(假设无畸变)
dist_coeffs = np.zeros((5, 1), dtype=np.float32)# 定义相机外参(旋转向量和平移向量)
rvec = np.array([0, 0, 0], dtype=np.float32)  # 无旋转
tvec = np.array([0, 0, -10], dtype=np.float32)  # 相机在 Z 轴正方向 5 个单位处# 将 3D 点投影到 2D 图像平面
image_points, _ = cv2.projectPoints(object_points, rvec, tvec, camera_matrix, dist_coeffs)# 创建一个空白图像(用于可视化)
image = np.zeros((480, 640, 3), dtype=np.uint8)image_points=np.squeeze(image_points,axis=1)
print(image_points)
# 在图像上绘制投影点
for point in image_points:x, y = point.ravel()cv2.circle(image, (int(x), int(y)), 3, (0, 255, 0), -1)  # 绘制绿色圆点# 显示图像
cv2.imshow("Projected Points", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

矩阵计算投影

内参,外参用的左乘

import numpy as np
import cv2# 定义相机内参矩阵 (3x3)
K = np.array([[1000, 0, 320],  # fx, 0, cx[0, 1000, 240],  # 0, fy, cy[0, 0, 1]])  # 0, 0, 1# 定义相机外参:旋转矩阵 (3x3) 和平移向量 (3x1)
R = np.eye(3)  # 假设相机没有旋转
t = np.array([[0], [0], [-10]])  # 相机在Z轴负方向平移10个单位# 生成随机3D点云 (Nx3)
num_points = 100
# points_3d = np.random.rand(num_points, 3) * 10  # 生成100个3D点,范围在[0, 10)points_3d = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, -1], [1, 0, -1], [1, 1, -1], [0, 1, -1]], dtype=np.float32)# 将3D点云从世界坐标系转换到相机坐标系
points_3d_cam = R @ points_3d.T + t  # 3xN
points_3d_cam = points_3d_cam.T  # 转置为Nx3# 将3D点云投影到2D图像平面
points_2d_homogeneous = K @ points_3d_cam.T  # 3xN
points_2d = points_2d_homogeneous[:2, :] / points_2d_homogeneous[2, :]  # 归一化
points_2d = points_2d.T  # 转置为Nx2# 创建空白图像
image_size = (640, 480)  # 图像尺寸
image = np.zeros((image_size[1], image_size[0], 3), dtype=np.uint8)print(points_2d)
# 将2D点绘制到图像上
for point in points_2d:x, y = int(point[0]), int(point[1])if 0 <= x < image_size[0] and 0 <= y < image_size[1]:  # 确保点在图像范围内cv2.circle(image, (x, y), 3, (0, 255, 0), -1)  # 绘制绿色圆点# 显示图像
cv2.imshow("2D Projection of Point Cloud", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结,两种方法的结果是一样的。


http://www.ppmy.cn/devtools/164898.html

相关文章

如何配置虚拟机IP?

以下是在虚拟机中配置IP地址的一般步骤&#xff0c;以常见的Linux虚拟机为例&#xff1a; 查看当前网络配置 使用命令 ifconfig 或 ip addr show 查看当前虚拟机的网络接口及相关配置信息&#xff0c;确定要配置IP的网络接口名称&#xff0c;如 eth0 或 ens33 等。 编辑网…

fastapi + 异步 sqlalchemy 连接 mysql 断开 2003 问题

资料 1.Fastapi 项目第二天首次访问时数据库连接报错问题Cant connect to MySQL server - 上海-悠悠 - 博客园2.Peewee_同步/异步/断线重连/连接池 - Alex-GCX - 博客园 3.【Python】SQLAlchemy长时间未请求&#xff0c;数据库连接断开的原因、解决方案_sqlalchemy session长…

【Linux】命名管道

个人主页~ 命名管道 一、命名管道1、与匿名管道的关系2、工作原理3、系统调用接口4、实现两个进程间通信tests.ctestr.c 二、可变参数列表 一、命名管道 1、与匿名管道的关系 命名管道由mkfifo创建&#xff0c;是一个文件&#xff0c;打开要用open打开 命名管道与匿名管道之间…

【SpringCloud】黑马微服务学习笔记

目录 1. 关于微服务 ?1.1 微服务与单体架构的区别 ?1.2 SpringCloud 技术 2. 学习前准备 ?2.1 环境搭建 ?2.2 熟悉项目 3. 正式拆分 ?3.1 拆分商品功能模块 ?3.2 拆分购物车功能模块 4. 服务调用 ?4.1 介绍 ?4.2 RustTemplate?的使用 4.3 服务治理-注册中…

基于云部署DeepSeek自动分析整合Dou音爆款视频数据

大家好&#xff0c;我是小黄。 上期我们介绍了基于云部署的deepseek自动分析整合xiaoHongShu的低粉爆款视频数据。那么很多小伙伴都来问我能不能出一个Dou音版本的。Dou音因为他的反爬做得比较好&#xff0c;所以小黄现在还没有获取到粉丝数量的功能。 我们先看看效果。我们根…

Redis的主要数据类型及其应用场景

Redis 是一种高性能的键值存储系统&#xff0c;支持多种数据类型&#xff0c;每种类型针对不同的应用场景设计。以下是 Redis 主要数据类型及其应用场景的详细说明&#xff1a; 1. String&#xff08;字符串&#xff09; 数据结构&#xff1a;二进制安全的字符串&#xff0c;可…

Llama 2中的Margin Loss:为何更高的Margin导致更大的Loss和梯度?

Llama 2中的Margin Loss&#xff1a;为何更高的Margin导致更大的Loss和梯度&#xff1f; 在《Llama 2: Open Foundation and Fine-Tuned Chat Models》论文中&#xff0c;作者在强化学习与人类反馈&#xff08;RLHF&#xff09;的Reward Model训练中引入了Margin Loss的概念&a…

Starrocks 写入报错 primary key memory usage exceeds the limit

背景 本文基于 StarRocks 3.3.5 单个Starrocks BE配置是 16CU 32GB 在Flink Yaml CDC 任务往 Starrocks写数据的过程中&#xff0c;突然遇到了primary key memory usage exceeds the limit 问题&#xff0c;具体如下&#xff1a; java.lang.RuntimeException: com.starrocks.…