开普勒优化算法(简称 KOA,即 Kepler Optimization Algorithm),是一种从开普勒行星运动规律中汲取灵感的元启发式算法。此算法模拟行星在不同时刻的位置与速度,每个行星象征着一个候选解,在优化进程中,会相对于当前已发现的最佳解(类比为 “太阳”)进行随机更新。KOA 通过引入多个行星候选解,有效实现了对搜索空间的探索与利用。这是因为这些行星在不同时间呈现出各异的状态,十分有利于实现全局优化。
在实际应用中,借助 KOA 对 LSBooST 进行回归预测,能够提升模型性能。此次所使用的数据源自 Excel 股票预测数据,数据集按 8:1:1 的比例,清晰地划分为训练集、验证集和测试集。
在代码结构方面,采用模块化设计,依据功能模块,将代码清晰地划分成数据准备、参数设置、算法处理以及结果展示等部分。这种设计显著提高了代码的可读性与可维护性。
数据处理流程同样清晰明确,对数据实施了标准化处理,其中包含 Zscore 标准化,并且将数据划分为训练集、验证集和测试集,这一系列操作有助于确保模型训练的准确性与可靠性。
为了更直观地呈现模型的预测效果,方便用户理解算法和模型的性能,通过绘制 KOA 寻优过程收敛曲线,以及训练集、验证集和测试集的真实标签与预测标签的曲线对比图,实现了结果的可视化。
同时输出多个评价指标
平均绝对误差(MAE)
平均相对误差(MAPE)
均方误差(MSE)
均方根误差(RMSE)
R方系数(R2)
代码有中文介绍。
算法设计、毕业设计、期刊专利!感兴趣可以联系我。
🏆代码获取方式1:
私信博主
🏆代码获取方式2
利用同等价值的matlab代码兑换博主的matlab代码
先提供matlab代码运行效果图给博主评估其价值,可以的话,就可以进行兑换。