什么是门控循环单元?

devtools/2025/2/5 17:13:50/

一、概念

        门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖捕捉能力,同时提高了计算效率。GRU通过引入两个门(重置门和更新门)来控制信息的流动。与LSTM不同,GRU没有单独的细胞状态,而是将隐藏状态直接作为信息传递的载体,因此结构更简单,计算效率更高。

二、核心算法

        令x_{t}为时间步 t 的输入向量,h_{t-1}为前一个时间步的隐藏状态向量,h_{t}为当前时间步的隐藏状态向量,r_{t}为当前时间步的重置门向量,z_{t}为当前时间步的更新门向量,\bar{h_{t}}为当前时间步的候选隐藏状态向量,W_{r},W_{z},W_{h}分别为各门的权重矩阵,b_{r},b_{z},b_{h}为偏置向量,\sigma为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。

1、重置门

        重置门控制前一个时间步的隐藏状态对当前时间步的影响。通过sigmoid激活函数,重置门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

r_{t} = \sigma(W_{r} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{r})

2、更新门

        更新门控制前一个时间步的隐藏状态和当前时间步的候选隐藏状态的混合比例。通过sigmoid激活函数,更新门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

z_{t} = \sigma(W_{z} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{z})

3、候选隐藏状态

        候选隐藏状态结合当前输入和前一个时间步的隐藏状态生成。重置门的输出与前一个隐藏状态相乘,表示保留的旧信息。然后与当前输入一起通过tanh激活函数生成候选隐藏状态。

\bar{h_{t}} = tanh(W_{h} \cdot \left [ r_{t} \ast h_{t-1}, x_{t} \right ] + b_{h})

4、隐藏状态更新

        隐藏状态结合更新门的结果进行更新。更新门的输出与前一个隐藏状态相乘,表示保留的旧信息。更新门的补数与候选隐藏状态相乘,表示写入的新信息。两者相加得到当前时间步的隐藏状态。

h_{t} = (1-z_{t}) \ast h_{t-1} + z_{t} \ast \bar{h_{t}}

三、python实现

python">import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt# 设置随机种子
torch.manual_seed(0)
np.random.seed(0)# 生成正弦波数据
timesteps = 1000
sin_wave = np.array([np.sin(2 * np.pi * i / timesteps) for i in range(timesteps)])# 创建数据集
def create_dataset(data, time_step=1):dataX, dataY = [], []for i in range(len(data) - time_step - 1):a = data[i:(i + time_step)]dataX.append(a)dataY.append(data[i + time_step])return np.array(dataX), np.array(dataY)time_step = 10
X, y = create_dataset(sin_wave, time_step)# 数据预处理
X = X.reshape(X.shape[0], time_step, 1)
y = y.reshape(-1, 1)# 转换为Tensor
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32)# 划分训练集和测试集
train_size = int(len(X) * 0.7)
test_size = len(X) - train_size
trainX, testX = X[:train_size], X[train_size:]
trainY, testY = y[:train_size], y[train_size:]# 定义RNN模型
class GRUModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(GRUModel, self).__init__()self.hidden_size = hidden_sizeself.gru = nn.GRU(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(1, x.size(0), self.hidden_size)out, _ = self.gru(x, h0)out = self.fc(out[:, -1, :])return outinput_size = 1
hidden_size = 50
output_size = 1
model = GRUModel(input_size, hidden_size, output_size)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# 训练模型
num_epochs = 50
for epoch in range(num_epochs):model.train()optimizer.zero_grad()outputs = model(trainX)loss = criterion(outputs, trainY)loss.backward()optimizer.step()if (epoch + 1) % 10 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 预测
model.eval()
train_predict = model(trainX)
test_predict = model(testX)
train_predict = train_predict.detach().numpy()
test_predict = test_predict.detach().numpy()# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(sin_wave, label='Original Data')
plt.plot(np.arange(time_step, time_step + len(train_predict)), train_predict, label='Training Predict')
plt.plot(np.arange(time_step + len(train_predict), time_step + len(train_predict) + len(test_predict)), test_predict, label='Test Predict')
plt.legend()
plt.show()

四、总结

        GRU的结构比LSTM更简单,只有两个门(重置门和更新门),没有单独的细胞状态。这使得GRU的计算复杂度较低,训练和推理速度更快。通过引入重置门和更新门,GRU也有效地解决了标准RNN在处理长序列时的梯度消失和梯度爆炸问题。然而,在需要更精细的门控制和信息流动的任务中,LSTM的性能可能优于GRU。因此在我们实际的建模过程中,可以根据数据特点选择合适的RNN系列模型,并没有哪个模型能在所有任务中都具有优势。


http://www.ppmy.cn/devtools/156328.html

相关文章

开源 CSS 框架 Tailwind CSS v4.0

开源 CSS 框架 Tailwind CSS v4.0 于 1 月 22 日正式发布,除了显著提升性能、简化配置体验外,还增强了功能特性,具体如下1: 性能提升 采用全新的高性能引擎 Oxide,带来了构建速度的巨大飞跃: 全量构建速度…

图神经网络驱动的节点分类:从理论到实践

图神经网络驱动的节点分类:从理论到实践 1. 引言 图神经网络(Graph Neural Networks,GNN)作为处理图结构数据的强大工具,近年来在学术界和工业界都取得了显著进展。其独特的消息传递机制能够有效捕捉图数据中的复杂关系,为节点分类、链接预测、图分类等任务提供了新的解…

「全网最细 + 实战源码案例」设计模式——模板方法模式

核心思想 模板方法模式(Template Method Pattern)是一种行为型设计模式,定义了一个算法的骨架(模板),将某些步骤延迟到子类中实现(在不修改结构的情况下),以避免代码重复…

新春贺岁,共赴AGI之旅

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 往期精彩文章推荐 季姮教授独家文字版干货 | 面向知识渊博的大语言模型 关于AI TIME AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题…

神经网络|(七)概率论基础知识-贝叶斯公式

【1】引言 前序我们已经了解了一些基础知识。 古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。 条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综…

Linux 系统上安装 Docker 方法详解与比较

Docker 是现代 DevOps 和容器化应用开发的重要工具,它简化了应用的部署和管理流程。本文将详细介绍在 Linux 系统上安装 Docker 的多种方法,并对它们的适用场景、优缺点进行对比,确保读者能够根据自身需求选择最优方案。 1. 官方推荐的安装方…

【游戏设计原理】98 - 时间膨胀

从上文中,我们可以得到以下几个启示: 游戏设计的核心目标是让玩家感到“时间飞逝” 游戏的成功与否,往往取决于玩家的沉浸感。如果玩家能够完全投入游戏并感受到时间飞逝,说明游戏设计在玩法、挑战、叙事等方面达到了吸引人的平衡…

【机器学习理论】朴素贝叶斯网络

基础知识: 先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。 后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。 …