神经网络|(七)概率论基础知识-贝叶斯公式

devtools/2025/2/5 16:45:12/

【1】引言

前序我们已经了解了一些基础知识。

古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。

条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)

全概率公式:全概率公式综合了所有条件,这些条件彼此互斥又总体互补。求全概率,是计算所有可能条件下的综合概率,全概率是条件概率的扩展。全概率公式的通用表达式为P(A)=P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

【2】贝叶斯公式

在此基础上,如果将条件概率和全概率的公式进行组合,展开P(A),P(AB)可分解为很多P(ABi)(i=1,2...,Bi代表彼此互斥但总体互补的条件),这样就会获得贝叶斯公式通用表达式:

P(Bi|A)=P(ABi)/P(A)=P(A|Bi)P(Bi)/P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)

实际上,贝叶斯公式就是考虑彼此互斥但总体互补的条件们各自所占的比例,各自所占的比例,。

因为P(B1UB2U...UBn)=1,所以单独求一个Bi所占的比例,尽管加上了一个A作为条件来约束,但无法改变Bi们彼此互斥但总体互补的现实基础。

综上所述,贝叶斯本身就是算各部分所占比例。

【3】总结

回顾了贝叶斯公式的推导过程,了解了贝叶斯公式的本质意义。贝叶斯公式是全概率公式和条件概率公式的组合形式,贝叶斯公式实际上是在计算彼此互斥但总体互补的条件们各自所占的比例。


http://www.ppmy.cn/devtools/156323.html

相关文章

Linux 系统上安装 Docker 方法详解与比较

Docker 是现代 DevOps 和容器化应用开发的重要工具,它简化了应用的部署和管理流程。本文将详细介绍在 Linux 系统上安装 Docker 的多种方法,并对它们的适用场景、优缺点进行对比,确保读者能够根据自身需求选择最优方案。 1. 官方推荐的安装方…

【游戏设计原理】98 - 时间膨胀

从上文中,我们可以得到以下几个启示: 游戏设计的核心目标是让玩家感到“时间飞逝” 游戏的成功与否,往往取决于玩家的沉浸感。如果玩家能够完全投入游戏并感受到时间飞逝,说明游戏设计在玩法、挑战、叙事等方面达到了吸引人的平衡…

【机器学习理论】朴素贝叶斯网络

基础知识: 先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。 后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。 …

【学习笔记之coze扣子】应用创建

今天我们来创建一个应用,也是非常简单 首先我们先创建一个应用的工作中心,为他写上名字 第二步 进来之后我们需要创建一个工作流,如果你用工作流,你也可以点击引入你需要的工作流 创建好工作流后,你会在工作台上看见一…

蓝桥杯python基础算法(2-1)——排序

目录 一、排序 二、例题 P3225——宝藏排序Ⅰ 三、各种排序比较 四、例题 P3226——宝藏排序Ⅱ 一、排序 (一)冒泡排序 基本思想:比较相邻的元素,如果顺序错误就把它们交换过来。 (二)选择排序 基本思想…

【单细胞-第三节 多样本数据分析】

文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd GSE183904 数据原文 1.获取临床信息 筛选样本可以参考临床信息 rm(list ls()) library(tinyarray) a geo_download("GSE183904")$pd head(a) table(a$Characteristics_ch1) #统计各样本有多少2.批量读取 学…

python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位异或运算: 两个等长度二进制数上下对齐,相…

计算机网络部分知识点(王道考研笔记)

计算机网络体系结构(概念、框架)(选择填空题) 什么是计算机网络? 计算机网络的概念:计算机网络是一个将众多分散的、自治的计算机系统,通过通信设备与线路连接起来,由功能完善的软…