【pytorch】现代卷积神经网络

devtools/2025/1/7 0:06:45/

文章目录

    • 1 AlexNet
    • 2 VGG
    • 3 NiN
    • 4 GoogLeNet
    • 5 批量规范化batch normalization
    • 6 ResNet
      • 6.1 残差块
      • 6.2 resnet
    • 7 DenseNet
      • 7.1 稠密块体
      • 7.2 过渡层
      • 7.3 DenseNet模型

1 AlexNet

AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。
AlexNet使用ReLU而不是sigmoid作为其激活函数。
在这里插入图片描述
AlexNet通过暂退法(Dropout)控制全连接层的模型复杂度

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 这里使用一个11*11的更大窗口来捕捉对象。# 同时,步幅为4,以减少输出的高度和宽度。# 另外,输出通道的数目远大于LeNetnn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),# 使用三个连续的卷积层和较小的卷积窗口。# 除了最后的卷积层,输出通道的数量进一步增加。# 在前两个卷积层之后,汇聚层不用于减少输入的高度和宽度nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(),# 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过拟合nn.Linear(6400, 4096), nn.ReLU(),nn.Dropout(p=0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(p=0.5),# 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000nn.Linear(4096, 10))

2 VGG

VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。

在这里插入图片描述

我们定义了一个名为vgg_block的函数来实现一个VGG块。

import torch
from torch import nn
from d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。
下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))
def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

3 NiN

NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。如果我们将权重连接到每个空间位置,我们可以将其视为1 × 1卷积层,或作为在每个像素位置上独立作用的全连接层。从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。
在这里插入图片描述

NiN块定义:

import torch
from torch import nn
from d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率(logits)。

net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())

4 GoogLeNet

在GoogLeNet中,基本的卷积块被称为Inception块
在这里插入图片描述

前三条路径使用窗口大小为1 × 1、3 × 3和5 × 5的卷积层,从不同空间大小中提取信息。中间的两条路径在输入上执行1 × 1卷积,以减少通道数,从而降低模型的复杂性。第四条路径使用3 × 3最大汇聚层,然后使用1 × 1卷积层来改变通道数。这四条路径都使用合适的填充来使输入与输出的高和宽一致,最后我们将每条线路的输出在通道维度上连结,并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)

GoogLeNet一共使用9个Inception块和全局平均汇聚层的堆叠来生成其估计值。Inception块之间的最大汇聚层可降低维度。第一个模块类似于AlexNet和LeNet,Inception块的组合从VGG继承,全局平均汇聚层避免了在最后使用全连接层。

在这里插入图片描述

逐一实现GoogLeNet的每个模块。
第一个模块使用64个通道、7 × 7卷积层。
在这里插入图片描述

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二个模块使用两个卷积层:第一个卷积层是64个通道、1×1卷积层;第二个卷积层使用将通道数量增加三倍的3×3卷积层。
在这里插入图片描述

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.ReLU(),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三个模块串联两个完整的Inception块。 第一个Inception块的输出通道数为64+128+32+32=256,四个路径之间的输出通道数量比为64:128:32:32=2:4:1:1。 第二个和第三个路径首先将输入通道的数量分别减少到96/192=1/2和16/192=1/12,然后连接第二个卷积层。第二个Inception块的输出通道数增加到128+192+96+64=480,四个路径之间的输出通道数量比为128:192:96:64=4:6:3:2。 第二条和第三条路径首先将输入通道的数量分别减少到128/256=1/2和32/256=1/8。
在这里插入图片描述

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂, 它串联了5个Inception块,其输出通道数分别是192+208+48+64=512、160+224+64+64=512、128+256+64+64=512、112+288+64+64=528和256+320+128+128=832。 这些路径的通道数分配和第三模块中的类似,首先是含3×3卷积层的第二条路径输出最多通道,其次是仅含1×1卷积层的第一条路径,之后是含5×5卷积层的第三条路径和含3×3最大汇聚层的第四条路径。 其中第二、第三条路径都会先按比例减小通道数。
在这里插入图片描述

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块包含输出通道数为256+320+128+128=832和384+384+128+128=1024的两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。 需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,将每个通道的高和宽变成1。 最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的全连接层。
在这里插入图片描述

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))

5 批量规范化batch normalization

在每次训练迭代中,我们首先规范化输入,即通过减去其均值并除以其标准差,其中两者均基于当前小批量处理。接下来,我们应用比例系数和比例偏移。
只有使用足够大的小批量,批量规范化这种方法才是有效且稳定的。请注意,在应用批量规范化时,批量大小的选择可能比没有批量规范化时更重要。
批量规范化BN根据以下表达式转换x:
在这里插入图片描述
µˆB是小批量B的样本均值,σˆ B是小批量B的样本标准差。应用标准化后,生成的小批量的平均值为0和单位方差为1。由于单位方差(与其他一些魔法数)是一个主观的选择,因此我们通常包含拉伸参数(scale)γ和偏移参数(shift)β,它们的形状与x相同。
在这里插入图片描述

在方差估计值中添加一个小的常量ϵ > 0,以确保我们永远不会尝试除以零,即使在经验方差估计值可能消失的情况下也是如此。

**批量规范化层在”训练模式“(通过小批量统计数据规范化)和“预测模式”(通过数据集统计规范化)中的功能不同。**在训练过程中,我们无法得知使用整个数据集来估计平均值和方差,所以只能根据每个小批次的平均值和方差不断训练模型。而在预测模式下,可以根据整个数据集精确计算批量规范化所需的平均值和方差。

**全连接层和卷积层,他们的批量规范化实现略有不同。**将批量规范化层置于全连接层中的仿射变换和激活函数之间。在卷积层之后和非线性激活函数之前应用批量规范化。当卷积有多个输出通道时,我们需要对这些通道的“每个”输出执行批量规范化,每个通道都有自己的拉伸(scale)和偏移(shift)参数,这两个参数都是标量。假设我们的小批量包含m个样本,并且对于每个通道,卷积的输出具有高度p和宽度q。那么对于卷积层,我们在每个输出通道的m · p · q个元素上同时执行每个批量规范化。因此,在计算平均值和方差时,我们会收集所有空间位置的值,然后在给定通道内应用相同的均值和方差,以便在每个空间位置对值进行规范化。

我们从头开始实现一个具有张量的批量规范化层:

import torch
from torch import nn
from d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):# 通过is_grad_enabled来判断当前模式是训练模式还是预测模式if not torch.is_grad_enabled():# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。# 这里我们需要保持X的形状以便后面可以做广播运算mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下,用当前的均值和方差做标准化X_hat = (X - mean) / torch.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 缩放和移位return Y, moving_mean.data, moving_var.data

现在可以创建一个正确的BatchNorm层。这个层将保持适当的参数:拉伸gamma和偏移beta,这两个参数将在训练过程中更新。此外,我们的层将保存均值和方差的移动平均值,以便在模型预测期间随后使用。

class BatchNorm(nn.Module):# num_features:完全连接层的输出数量或卷积层的输出通道数。# num_dims:2表示完全连接层,4表示卷积层def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)# 参与求梯度和迭代的拉伸和偏移参数,分别初始化成1和0self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))# 非模型参数的变量初始化为0和1self.moving_mean = torch.zeros(shape)self.moving_var = torch.ones(shape)def forward(self, X):# 如果X不在内存上,将moving_mean和moving_var# 复制到X所在显存上if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)# 保存更新过的moving_mean和moving_varY, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y

也可以直接使用深度学习框架中定义的BatchNorm:

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), **nn.BatchNorm2d(6)**, nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), **nn.BatchNorm2d(16)**, nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(256, 120), **nn.BatchNorm1d(120)**, nn.Sigmoid(),nn.Linear(120, 84), **nn.BatchNorm1d(84)**, nn.Sigmoid(),nn.Linear(84, 10))

6 ResNet

6.1 残差块

在这里插入图片描述

ResNet沿用了VGG完整的3 × 3卷积层设计。残差块里首先有2个有相同输出通道数的3 × 3卷积层。每个卷积层后接一个批量规范化层和ReLU激活函数。然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2lclass Residual(nn.Module):  #@savedef __init__(self, input_channels, num_channels,use_1x1conv=False, strides=1):super().__init__()self.conv1 = nn.Conv2d(input_channels, num_channels,kernel_size=3, padding=1, stride=strides)self.conv2 = nn.Conv2d(num_channels, num_channels,kernel_size=3, padding=1)if use_1x1conv:self.conv3 = nn.Conv2d(input_channels, num_channels,kernel_size=1, stride=strides)else:self.conv3 = Noneself.bn1 = nn.BatchNorm2d(num_channels)self.bn2 = nn.BatchNorm2d(num_channels)def forward(self, X):Y = F.relu(self.bn1(self.conv1(X)))Y = self.bn2(self.conv2(Y))if self.conv3:X = self.conv3(X)Y += Xreturn F.relu(Y)

此代码生成两种类型的网络:一种是当use_1x1conv=False时,应用ReLU非线性函数之前,将输入添加到输出。另一种是当use_1x1conv=True时,添加通过1 × 1卷积调整通道和分辨率。
在这里插入图片描述

6.2 resnet

在这里插入图片描述

ResNet的前两层跟之前介绍的GoogLeNet中的一样: 在输出通道数为64、步幅为2的7×7卷积层后,接步幅为2的3×3的最大汇聚层。 不同之处在于ResNet每个卷积层后增加了批量规范化层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块。 ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。 第一个模块的通道数同输入通道数一致。 由于之前已经使用了步幅为2的最大汇聚层,所以无须减小高和宽。 之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

def resnet_block(input_channels, num_channels, num_residuals,first_block=False):blk = []for i in range(num_residuals):if i == 0 and not first_block:blk.append(Residual(input_channels, num_channels,use_1x1conv=True, strides=2))else:blk.append(Residual(num_channels, num_channels))return blk

在ResNet加入所有残差块,这里每个模块使用2个残差块。

b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

与GoogLeNet一样,在ResNet中加入全局平均汇聚层,以及全连接层输出。

net = nn.Sequential(b1, b2, b3, b4, b5,nn.AdaptiveAvgPool2d((1,1)),nn.Flatten(), nn.Linear(512, 10))

每个模块有4个卷积层(不包括恒等映射的1×1卷积层)。 加上第一个7×7卷积层和最后一个全连接层,共有18层。 因此,这种模型通常被称为ResNet-18。

7 DenseNet

稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。
在这里插入图片描述

ResNet(左)与 DenseNet(右)在跨层连接上的主要区别:使用相加和使用连结。ResNet和DenseNet的关键区别在于,DenseNet输出是连接(用图中的[, ]表示)而不是如ResNet的简单相加。
在这里插入图片描述

最后一层与之前的所有层紧密相连。
稠密网络主要由2部分构成:稠密块(dense block)和过渡层(transition layer)。前者定义如何连接输入和输出,而后者则控制通道数量。

7.1 稠密块体

DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构

import torch
from torch import nn
from d2l import torch as d2ldef conv_block(input_channels, num_channels):return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1))

一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。 然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。

class DenseBlock(nn.Module):def __init__(self, num_convs, input_channels, num_channels):super(DenseBlock, self).__init__()layer = []for i in range(num_convs):layer.append(conv_block(num_channels * i + input_channels, num_channels))self.net = nn.Sequential(*layer)def forward(self, X):for blk in self.net:Y = blk(X)# 连接通道维度上每个块的输入和输出X = torch.cat((X, Y), dim=1)return X

7.2 过渡层

由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。 而过渡层可以用来控制模型复杂度。 它通过1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。

def transition_block(input_channels, num_channels):return nn.Sequential(nn.BatchNorm2d(input_channels), nn.ReLU(),nn.Conv2d(input_channels, num_channels, kernel_size=1),nn.AvgPool2d(kernel_size=2, stride=2))

7.3 DenseNet模型

构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.BatchNorm2d(64), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与 7.6节的ResNet‐18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。

# num_channels为当前的通道数
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):blks.append(DenseBlock(num_convs, num_channels, growth_rate))# 上一个稠密块的输出通道数num_channels += num_convs * growth_rate# 在稠密块之间添加一个转换层,使通道数量减半if i != len(num_convs_in_dense_blocks) - 1:blks.append(transition_block(num_channels, num_channels // 2))num_channels = num_channels // 2

与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。

net = nn.Sequential(b1, *blks,nn.BatchNorm2d(num_channels), nn.ReLU(),nn.AdaptiveAvgPool2d((1, 1)),nn.Flatten(),nn.Linear(num_channels, 10))

http://www.ppmy.cn/devtools/146621.html

相关文章

Fastbot-iOS(iOS monkey)schema参数的指定方式

之前介绍过iOS monkey 的安装和使用方式,上周跑了一次,发现了4个crash,挺好用。 这回更新一下schema参数的指定方式, 1、排除的元素(不需要点击的元素)格式:excluded_elements "退出登录…

【论文阅读笔记】Scalable, Detailed and Mask-Free Universal Photometric Stereo

【论文阅读笔记】Scalable, Detailed and Mask-Free Universal Photometric Stereo 前言摘要引言Task 相关工作方法SDM-UniPS预处理尺度不变的空间光特征编码器像素采样变压器的非局部交互 PS-Mix数据集 实验结果训练细节评估和时间: 消融实验定向照明下的评估没有对…

ACDC中AC前级EMS【EMC】

顺序是:保险丝--->共模电感---->X电容(泄放电阻): 在ACDC电源设计中,AC前级EMS(电磁兼容)部分的X电容和Y电容用于减少电磁干扰(EMI),提高设备的抗干扰性…

云计算时代携程的网络架构变迁

大家觉得有意义和帮助记得及时关注和点赞!!! 前言关于我0 关于携程云 网络演进时间表1 个基于 VLAN 的 L2 网络 1.1 要求1.2 解决方案:OpenStack Provider Network Model1.3 硬件网络拓扑1.4 主机网络拓扑1.5 总结 优势劣势2 个基于 SDN 的大型 L2 网络 2.1 新挑战2…

anaconda环境使用

下载安装包 https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载完后双击安装,一路下一步,默认安装的是py3.7 conda 终端 打开普通的终端无法执行conda 命令 conda 命令 conda create -n your_env_name pythonX.X 指定python 版本 conda cr…

音视频入门基础:MPEG2-PS专题(1)——MPEG2-PS官方文档下载

一、引言 MPEG2-PS(又称PS,Program Stream,程序流,节目流)是一种多路复用数字音频、视频等的封装容器。MPEG2-PS将一个或多个分组但有共同的时间基准的基本数据流 (PES)合并成一个整体流。它是…

upload-labs关卡记录8

黑名单过滤,同时不能进行双写,大小写,特殊可解析后缀,.htaccess,都不能。点击提示发现: 禁止上传所有可解析后缀,抓包试试: 抓包加空格发现也不能绕过,看源码分析吧: $i…

配置搜索无人机

升级ubuntu内核 https://www.bilibili.com/video/BV11X4y1h7qN/?spm_id_from333.337.search-card.all.click 进入四个内核文件并安装 sudo dpkg -i *.deb安装ROS,PX4,XTDrone,QGC https://blog.csdn.net/qq_45493236/article/details/13…