【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响

devtools/2024/11/19 9:54:30/

【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响

论文:https://arxiv.org/pdf/2310.05492
在这里插入图片描述

目录

文章目录

  • 【大语言模型】ACL2024论文-12 大型语言模型的能力如何受到监督式微调数据组成影响
    • 论文:https://arxiv.org/pdf/2310.05492 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/257626ae6bb94aa0811812699a8d831b.png)
    • 目录
    • 摘要
    • 研究背景
    • 问题与挑战
    • 如何解决
    • 创新点
    • 算法模型
    • 实验效果
    • 重要数据与结论
    • 推荐阅读指数:★★★★☆
    • 后记


大型语言模型的能力如何受到监督式微调数据组成影响》

摘要

本文研究了大型语言模型(LLMs)在数学推理、代码生成和一般人类对齐能力方面的多样化能力,以及这些能力如何通过监督式微调(SFT)得到增强。研究团队提出了四个研究问题来探索模型性能与数据量、数据组成比例、模型规模和SFT策略之间的关联。实验结果显示,不同的能力在数据量增加时表现出不同的扩展模式,且在相同数据量下,更大的模型通常表现出更优越的性能。数学推理和代码生成随着数据量的增加而持续改进,而一般能力在大约一千个样本后达到平稳。此外,数据组成在有限数据条件下似乎可以增强各种能力,但在数据充足时可能导致性能冲突。研究还发现,组成数据的数量比组成比例对性能的影响更大。在SFT策略分析中,研究者发现顺序学习多种技能可能导致灾难性遗忘。为此,提出了一种双阶段混合微调(DMT)策略,该策略提供了一个有希望的解决方案,用于学习具有不同扩展模式的多种能力。

研究背景

随着大型语言模型(LLMs)的发展,它们在处理自然语言任务方面展现出了卓越的能力。这些模型通过在大量预训练数据上训练,获得了包括数学推理、代码生成和遵循人类指令在内的多种能力。为了进一步提升这些能力,研究者们采用了监督式微调(SFT)的方法。然而,尽管已有研究探索了针对单一任务的SFT,但对于如何在多任务环境中通过SFT提升LLMs的多方面能力,仍缺乏深入理解。
在这里插入图片描述

问题与挑战

LLMs在多任务学习中面临的主要挑战包括:

  1. 数据量与性能的扩展模式:不同的任务(如数学推理和代码生成)在数据量增加时,其性能提升的模式可能不同。
  2. 多任务学习中的性能冲突:在同时微调多个任务时,可能会出现性能冲突,即某些任务的性能提升以牺牲其他任务的性能为代价。
  3. 灾难性遗忘:在顺序学习多个任务时,模型可能会忘记先前学习的任务,导致性能下降。
  4. 数据组成的影响:数据的组成比例和数量对模型性能有显著影响,但目前尚不清楚如何最佳地组合数据以提升多任务性能。

如何解决

为了解决上述挑战,研究者们采取了以下方法:

  • 提出研究问题:通过定义四个研究问题来指导研究,这些问题涉及数据量、数据组成比例、模型规模和SFT策略对性能的影响。
  • 实验设计:在不同的数据集和模型规模上进行广泛的实验,以评估不同因素对性能的影响。
  • 双阶段混合微调(DMT)策略:提出了一种新的SFT策略,旨在减少多任务学习中的性能冲突,并减轻顺序学习中的灾难性遗忘问题。

创新点

本文的主要创新点包括:

  1. 多任务学习中的性能扩展模式:揭示了不同任务在数据量增加时的性能扩展模式,为理解LLMs的多任务学习能力提供了新的视角。
  2. 双阶段混合微调(DMT)策略:提出了一种新的SFT策略,有效地平衡了多任务学习中的性能冲突和灾难性遗忘问题。
  3. 数据组成的影响分析:通过实验分析了数据组成比例和数量对模型性能的影响,为如何组合数据提供了指导。

算法模型

本文中提到的算法模型主要是大型语言模型(LLMs),特别是LLaMA系列模型。这些模型在不同的数据集上进行微调,以激活数学推理、代码生成和一般人类对齐能力。研究者们探索了四种不同的SFT策略:

  1. 多任务学习:直接混合不同的SFT数据源进行微调。
  2. 顺序训练:按顺序在每个数据集上应用SFT。
  3. 混合顺序训练:先在专业数据集上进行多任务学习,然后在一般能力数据集上进行SFT。
  4. 双阶段混合微调(DMT):首先在专业数据集上进行SFT,然后在一般数据和少量专业数据的混合数据集上进行第二阶段的SFT。

实验效果

实验结果表明:

  • 性能扩展模式:数学推理和代码生成能力随着数据量的增加而持续改进,而一般能力在大约一千个样本后达到平稳。
  • 数据组成的影响:在有限数据条件下,数据组成可以增强各种能力,但在数据充足时可能导致性能冲突。
  • DMT策略的有效性:DMT策略在减少性能冲突和减轻灾难性遗忘方面表现出色,特别是在数学推理和代码生成任务上。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

重要数据与结论

一些关键数据和结论包括:

  • 模型规模的影响:更大的模型在相同数据量下通常表现出更好的性能。
  • 数据量与性能的关系:不同任务的性能随着数据量的增加而表现出不同的扩展模式。
  • DMT策略的优越性:DMT策略在多任务学习中有效地平衡了性能,减轻了灾难性遗忘问题。

推荐阅读指数:★★★★☆


后记

如果您对我的博客内容感兴趣,欢迎三连击 (***点赞、收藏和关注 ***)和留下您的评论,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术


http://www.ppmy.cn/devtools/135179.html

相关文章

ffmpeg自动手动编译安装

1.下载linux ndk并配置profile文件 本例以android-ndk-r10e为例 vi /etc/profile export NDK_HOME/root/ffmpeg/android-ndk-r10e export PATH P A T H : PATH: PATH:NDK_HOME source /etc/profile 2.下载x264并生成 git clone https://code.videolan.org/videolan/x264.g…

聊一聊Elasticsearch的索引分片的恢复机制

1、什么是索引分片的恢复? 所谓索引分片的恢复指的是在某些条件下,索引分片丢失,ES会把某索引的分片复制一份来得到该分片副本的过程。 2、触发分片恢复的场景有哪些? 分片的分配 当集群中节点的数量发生变化,或者配…

整理iPhone空间:iphone怎么删除相簿

随着时间的积累,我们的iPhone中不仅会堆积大量照片,还可能会有多个不再需要的相簿。这些相簿不仅占用存储空间,还可能使相册应用变得杂乱无章。本文将探讨iphone怎么删除相簿,并介绍精简iPhone相册的技巧,使你的相册管…

MySQL慢日志

慢查询日志顾名思义就是查询慢的sql语句可以记录到一个日志文件里,至于有多慢才会被记录,默认是10秒,但也可以通过系统配置来更改,慢日志在做系统优化时是一个非常好用的工具 #是否开启慢日志 show variables like slow_query_log…

对PolyMarket的突袭

一天清晨六点,美国联邦调查局的探员冲进了纽约市的一间公寓。这间公寓的主人是26岁的Shane Copeland,一个有着凌乱头发的年轻人,也是一个加密货币狂热者。他运营着一个名为PolyMarket的网站——一个允许用户YZ全球事件结果的平台,…

Spring5

Spring 以下内容仅为了方便复制 IOC作用工作原理 1. 类注解ComponentComponent设置实例名 2. 成员注解:注入基本数据类型与引用类型1. Value:注入基本数据类型2. Autowired:引用类型注入3. 注解Qualifier("对象名")通过对象名注入4…

6.C操作符详解,深入探索操作符与字符串处理

C操作符详解,深入探索操作符与字符串处理 C语言往期系列文章目录 往期回顾: C语言是什么?编程界的‘常青树’,它的辉煌你不可不知VS 2022 社区版C语言的安装教程,不要再卡在下载0B/s啦C语言入门:解锁基础…

Java LinkedList 详解

LinkedList 是 Java 集合框架中常用的数据结构之一,位于 java.util 包中。它实现了 List、Deque 和 Queue 接口,是一个双向链表结构,适合频繁的插入和删除操作。 1. LinkedList 的特点 数据结构:基于双向链表实现,每个…