YOLOv8改进,YOLOv8通过RFAConv卷积创新空间注意力和标准卷积,包括RFCAConv, RFCBAMConv,二次创新C2f结构,助力涨点

devtools/2024/11/17 22:15:37/

在这里插入图片描述


摘要

空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享的问题。相比之下,RFA不仅关注感受野的空间特征,还为大尺寸卷积核提供有效的注意力权重。由 RFA 设计的感受野注意力卷积操作(RFAConv)提供了一种新的方法,能够替代标准卷积操作。


# 理论介绍

RFAConv的核心思想是解决卷积神经网络中的卷积核参数共享问题,并通过感受野空间特征提高网络的性能。其创新在于引入了一种新的注意力机制——感受野注意力(RFA),该机制不仅关注空间特征,还有效地解决了大尺寸卷积核的参数共享问题,从而提升了网络的表达能力。核心思想如下:

  • 卷积核参数共享问题:

    在标准卷积中,同一个卷积核的参数被应用于整个图像的不同感受野区域,因此不同位置的特征共享相同的卷积核参数,这会导致模型在某些情况下无法充分捕捉不同位置的局部差异。空间注意力机制(如CBAM和CA)通过引入注意力图来对不同位置的特征进行加权,从而提高了网络对重要特征的关注。但这些机制仍然无法完全解决大尺寸卷积核的参数共享问题,尤其在处理感受野更大的情况下,性能有限。

  • 感受野空间特征:
    RFAConv通过引入感受野空间特征,每个感受野区域内的卷积核参数不再共享,而是根据位置和上下文信息动态调整。这样,卷积操作能够针对不同位置的特征提供不同的加权,捕捉到更丰富的空间信息。

  • 感受野注意力(RFA):
    RFA关注的不仅是图像中的空间特征,还重点考虑了每个感受野的空间特征。通过计算并引入感受野内各特征的重要性加权,RFA 能够提供对每个特征的动态加权,在不同区域使用不同的参数,这在传统卷积中是无法实现的。与传统的空间注意力机制相比,RFA 能通过感受野的空间特征更精准地捕捉每个区域的局部信息。

  • RFAConv的卷积操作
    RFAConv通过加权卷积操作,结合感受野注意力机制和标准卷积核,使得卷积操作不仅仅局限于对输入特征进行加权和求和,而是动态调整卷积核参数,从而改善了卷积核参数共享的不足。

  • 实现细节:
    RFAConv采用了快速的Group Conv方法来替代传统的Unfold方法,快速提取感受野空间特征,在保证参数量相似的情况下,减少了计算开销,并提高了训练效率。

RFAConv原理如图所示(摘自论文):
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:


http://www.ppmy.cn/devtools/134806.html

相关文章

速盾:cdn 支持 php 吗?

在网络开发中,PHP 是一种广泛使用的服务器端脚本语言,用于创建动态网页和 web 应用程序。CDN(Content Delivery Network,内容分发网络)在内容分发方面具有强大的功能,那么它是否支持 PHP 呢? C…

3D Gaussian Splatting 代码层理解之Part2

现在让我们来谈谈高斯分布。我们已经在Part1介绍了如何根据相机的位置获取 3D 点并将其转换为 2D。在本文中,我们将继续处理高斯泼溅的高斯部分。这里用到的是 GitHub 中part2. 我们在这里要做的一个小改动是,我们将使用透视投影,它利用与上一篇文章中所示的不同内部矩阵。…

No Module named pytorchvideo.losses问题解决

问题描述 最近在跑X3D的源码时发现,在conda powershell prompt中安装了pytorchvideo,但是仍然报错:No Module named pytorchvideo.losses 解决方案: 直接去https://gitcode.com/gh_mirrors/py/pytorchvideo/overview?utm_sour…

24. 正则表达式

一、什么是正则表达式 正则表达式(regular expression)又称 规则表达式,是一种文本模式(pattern)。正则表达式使用一个字符串来描述、匹配具有相同规格的字符串,通常被用来检索、替换那些符合某个模式&…

golang对日期格式化

1.对日期格式化为 YYYY-mm-dd, 并且没有数据时,返回空 import ("encoding/json""time" )type DateTime time.Timetype SysRole struct {RoleId int64 gorm:"type:bigint(20);primary_key;auto_increment;角色ID;" json:&quo…

AI赋能电商:提升销售效率与用户体验的新引擎

在数字化时代,人工智能(AI)技术正逐步渗透到各行各业,其中电商行业尤为显著。AI技术的引入不仅为电商平台带来了前所未有的创新应用,还极大地提升了销售效率和用户体验。本文将探讨AI技术在购物推荐、会员分类、商品定…

int溢出值(c基础)

1. **整数类型** - **字节型(byte)** - **定义**:字节型通常占用1个字节(8位)存储空间。 - **范围**:在有符号的情况下,范围是从 - 128到127(使用补码表示,最小值为$1000…

SpringBoot开发——整合AJ-Captcha实现安全高效的滑动验证码

文章目录 一、什么是AJ-Captcha二、项目配置1、Maven依赖配置2、滑动验证码的基本原理3、 后端实现3.1 生成滑动验证码图片代码解释3.2 校验滑块位置代码解释4、前端部分代码解释5、Redis 缓存滑动验证码信息5.1 Redis配置5.2使用Redis缓存验证码数据5.3 校验时从Redis获取总结…