【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!

devtools/2024/11/8 18:11:16/

数据集介绍

数据集道路事故识别数据集 8939 张,目标检测,包含YOLO/VOC格式标注。数据集中包含2种分类:{'0': 'accident', '1': 'non-accident'}。数据集来自国内外图片网站和视频截图。检测范围道路事故检测监控视角检测、无人机视角检测、等,可用于智慧城市、智慧交通,服务于交通拥塞预警、交通安全排查

一、数据概述

道路事故识别的重要性

交通事故导致的人员伤亡和财产损失巨大,因此,提高交通管理的效率和安全性显得尤为重要。道路事故识别作为智能交通系统(ITS)的重要组成部分,能够实时监控交通状况,及时发现并处理交通事故,从而有效缩短紧急服务响应时间,减少交通阻塞,为事故分析和预防措施的制定提供数据支持。

道路事故识别面临诸多技术挑战,如光照条件变化、天气状况影响、交通标志和交通流复杂性等。这些因素都可能影响道路事故识别的准确性和实时性。因此,需要开发更加高效和鲁棒的目标检测算法来应对这些挑战。

基于YOLO的道路识别算法

基于YOLO的道路事故识别算法可以通过摄像头实时捕捉交通场景图像,并利用训练好的YOLO模型对图像进行目标检测

该算法可以识别出车辆、行人等交通参与者,并判断是否存在交通事故。一旦检测到事故,算法可以立即发出警报,并自动记录事故发生的细节,包括事故类型、位置、时间以及涉及的车辆和行人信息。这些信息可以为交通管理部门提供重要的参考依据,帮助他们快速响应和处理交通事故。

该数据集含有8939张图片,包含Pascal VOC XML格式和YOLO TXT格式,用于训练和测试道路事故识别监控视角检测、无人机视角检测。图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

二、数据集文件结构

road_accident/

——Annotations/

——images/

——labels/

——data.yaml

Annotations文件夹为Pascal VOC格式的XML文件 ,images文件夹为jpg格式的数据样本,labels文件夹是YOLO格式的TXT文件,data.yaml是数据集配置文件,包含道路事故识别的目标分类和加载路径。

三、数据集适用范围 

  • 目标检测场景
  • yolo训练模型或其他模型
  • 智慧城市、智慧交通
  • 道路事故检测监控视角检测、无人机视角检测、交通拥塞预警、交通安全排查

四、数据集标注结果 

​​​​​

​​

1、数据集内容 

  1. 多角度场景:包含行人视角、俯视视角、监控视角、无人机视角;
  2. 标注内容:names: ['accident', 'non-accident'],总计2个分类。
  3. 图片总量:8939张图片数据;
  4. 标注类型:含有Pascal VOC XML格式和yolo TXT格式;

五、训练过程

1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

​​​

ultralytics-main项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels,其中,将pascal VOC格式的XML文件手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

——Annotations/   //存放xml文件

——images/          //存放jpg图像

——imageSets/

——labels/

整体项目结构如下所示:

2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

import os
import randomtrainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:ftrainval.write(name)if i in train:ftrain.write(name)else:fval.write(name)else:ftest.write(name)ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

3、数据集格式化处理

这段代码是用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件。

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ['accident', 'non-accident'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

4、修改数据集配置文件

train: ../train/images
val: ../valid/images
test: ../test/imagesnc: 2
names: ['accident', 'non-accident']

5、执行命令

执行train.py

model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

6、模型预测 

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

import cv2
from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) # Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径# Loop through the video frames
while cap.isOpened():# Read a frame from the videosuccess, frame = cap.read()if success:# Run YOLOv8 inference on the frame# results = model(frame)results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)results[0].names[0] = "道路积水"# Visualize the results on the frameannotated_frame = results[0].plot()# Write the annotated frame to the output fileout.write(annotated_frame)# Display the annotated frame (optional)cv2.imshow("YOLOv8 Inference", annotated_frame)# Break the loop if 'q' is pressedif cv2.waitKey(1) & 0xFF == ord("q"):breakelse:# Break the loop if the end of the video is reachedbreak# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

yolo predict model="best.pt" source='demo.jpg'

六、获取数据集 

戳我头像获取数据,或者主页私聊博主哈~

基于QT的目标检测可视化界面

一、环境配置

# 安装torch环境
pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装PySide6依赖项
pip install PySide6 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 安装opencv-python依赖项
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用说明

​​​​

界面功能介绍:

  • 原视频/图片区:上半部分左边区域为原视频/图片展示区;
  • 检测区:上半部分右边区域为检测结果输出展示区
  • 文本框:打印输出操作日志,其中告警以json格式输出,包含标签框的坐标,标签名称等
  • 加载模型:下拉框绑定本地文件路径,按钮加载路径下的模型文件;
  • 置信度阈值自定义检测区的置信度阈值,可以通过滑动条的方式设置
  • 文件上传:选择目标文件,包含JPG格式和MP4格式
  • 开始检测:执行检测程序;
  • 停止:终止检测程序;

 三、预测效果展示

1、图片检测

​​​​

切换置信度再次执行:

​​​​

上图左下区域可以看到json格式的告警信息,用于反馈实际作业中的管理系统,为管理员提供道路养护决策 。

2、视频检测 

​​​​

3、日志文本框

四、前端代码 

class MyWindow(QtWidgets.QMainWindow):def __init__(self):super().__init__()self.init_gui()self.model = Noneself.timer = QtCore.QTimer()self.timer1 = QtCore.QTimer()self.cap = Noneself.video = Noneself.file_path = Noneself.base_name = Noneself.timer1.timeout.connect(self.video_show)def init_gui(self):self.folder_path = "model_file"  # 自定义修改:设置文件夹路径self.setFixedSize(1300, 650)self.setWindowTitle('目标检测')  # 自定义修改:设置窗口名称self.setWindowIcon(QIcon("111.jpg"))  # 自定义修改:设置窗口图标central_widget = QtWidgets.QWidget(self)self.setCentralWidget(central_widget)main_layout = QtWidgets.QVBoxLayout(central_widget)# 界面上半部分: 视频框topLayout = QtWidgets.QHBoxLayout()self.oriVideoLabel = QtWidgets.QLabel(self)# 界面下半部分: 输出框 和 按钮groupBox = QtWidgets.QGroupBox(self)groupBox.setStyleSheet('QGroupBox {border: 0px solid #D7E2F9;}')bottomLayout = QtWidgets.QHBoxLayout(groupBox)main_layout.addWidget(groupBox)btnLayout = QtWidgets.QHBoxLayout()btn1Layout = QtWidgets.QVBoxLayout()btn2Layout = QtWidgets.QVBoxLayout()btn3Layout = QtWidgets.QVBoxLayout()# 创建日志打印文本框self.outputField = QtWidgets.QTextBrowser()self.outputField.setFixedSize(530, 180)self.outputField.setStyleSheet('font-size: 13px; font-family: "Microsoft YaHei"; background-color: #f0f0f0; border: 2px solid #ccc; border-radius: 10px;')self.detectlabel = QtWidgets.QLabel(self)self.oriVideoLabel.setFixedSize(530, 400)self.detectlabel.setFixedSize(530, 400)self.oriVideoLabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top:75px;')self.detectlabel.setStyleSheet('border: 2px solid #ccc; border-radius: 10px; margin-top: 75px;')topLayout.addWidget(self.oriVideoLabel)topLayout.addWidget(self.detectlabel)main_layout.addLayout(topLayout)

五、代码获取

YOLO可视化界面

戳我头像获取数据,或者主页私聊博主哈~

注:以上均为原创内容,转载请私聊!!!


http://www.ppmy.cn/devtools/132370.html

相关文章

解析Go切片:为何按值传递时会发生改变?|得物技术

一、前言 在Go语言中,切片是一个非常常用的数据结构,很多开发者在编写代码时都会频繁使用它。尽管切片很方便,但有一个问题常常让人感到困惑:当我们把切片作为参数传递给函数时,为什么有时候切片的内容会发生变化&…

嵌入式之C语言(基础篇)

首先,我们要知道什么是程序。程序:为了让计算机执行某操作或解决某个问题而编写的一系列有序指令的集合。 一、计算机语言简史 第一代是机器语言:时间实在1946年,第一台计算机ENIAC诞生,用的是穿孔卡片做的&#xff0c…

libuv的调用例子

(来自文心一言) Libuv 是一个多平台的异步 I/O 库,旨在提供事件驱动的编程模型,类似于 Node.js 的底层机制。以下是一个简单的例子,展示了如何使用 libuv 来创建一个 TCP 服务器和客户端。 首先,确保你已…

Python Numpy中的广播的含义(Numpy Broadcasting)

Numpy数组之间进行运算时,通常是逐元素之间进行运算,这通常要求数组具有相同的形状。而“广播(Broadcasting)”机制降低了这个限制,只需要满足一定的条件,形状不同的数组也可以进行运算,小数组会…

软件测试—功能测试详解

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 一、测试项目启动与研读需求文档 (一) 组建测试团队 1、测试团队中的角色 2、测试团队的基本责任 尽早地发现软件程序、系统或产…

求解优化问题算法探讨与分析

一、分枝定界法:强大的优化求解工具 (一)起源与发展 分枝定界法由查理德・卡普在 20 世纪 60 年代发明,当时成功求解了含有 65 个城市的旅行商问题,创下了记录。此后,该方法被广泛应用于整数规划问题、生…

Oceanbase学习之一迁移mysql数据到oceanbase

一、数据库环境 #mysql环境 root192.168.150.162 20:28: [(none)]> select version(); ---------- | version() | ---------- | 8.0.26 | ---------- 1 row in set (0.00 sec) root192.168.150.162 20:28: [(none)]> show variables like ‘%char%’; ---…

Django中ListView 和 DetailView类的区别

在Django中,ListView 和 DetailView都是基于类的视图,在处理请求时通常会自动调用render_to_response函数,但由于项目需求不同,实现时需要重写render_to_response函数 ListView 和 DetailView介绍 ListView 介绍主要用于展示一个…