数据在内存中的存储【下】

devtools/2025/2/19 8:50:58/

三.浮点数在内存中的存储

我们常见的浮点数:3.14159,1E10等,浮点数家族包括:float,double, long double类型。浮点数表示的范围:float.h中定义。之前我们说过浮点数在内存中无法精确保存,那为什么呢?,它跟我们将要讲的这个章节有很大关系。

补充小知识:1E101.0*10的十次方,底数为10
可以在everything里面搜float.h,来查看浮点数。

浮点数在内存中到底是怎么存储的,我们先看一个练习。

在这里插入图片描述

先看结果。

在这里插入图片描述

说明:整型在内存中的存储方式和浮点数在内存中的存储方式是不一样的。

1.浮点数的存储

上面的代码中, num和 *pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会)754,任意一个二进制浮点数V可以表示成下面的形式:
V=(-1)^S * M * 2^E
·(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
.M表示有效数字,M是大于等于1,小于2的
. 2^E表示指数位
举例来说:
十进制的5.0,写成二进制是101.0,相当于1.01x2^2。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的﹣5.0,写成二进制是﹣101.0,相当于﹣1.01x2^2。那么,S=1,M=1.01,E=2.

我们再来画图详细说明一下:
在这里插入图片描述

相当于我们把S,M,E存起来,浮点数也被我们存起来了。接下来看看怎么存。IEEE 754规定:
对于32位的浮点数(float),最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M 对于64位的浮点数(double),最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。

如图:

在这里插入图片描述

上面是两个类型根据它们的比特位分配给S,M,E的空间,划分好内存,也就是它们怎么来存储浮点数。

2.浮点数存的过程

IEEE754对有效数字M和指数E,还有一些特别规定。
前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754 规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0到255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

在这里插入图片描述

3.浮点数取的过程

指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1(常规情况)
TH
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:0.5的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码
为﹣1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位
00000000000000000000000,则其二进制表示形式为:

1 0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
1 0 00000000 00100000000000000000000

E全为1

这时,如果有效数字M全为0,表示+无穷大(正负取决于符号位s);

1 0 11111111 00010000000000000000000

好了,关于浮点数的表示规则,就说到这里。

这时候我们再来看上面的例子

在这里插入图片描述

整型的形式放进去,又以整数的形式拿出来,以%d的格式进行打印,结果就是9。

当我们以浮点数的视角看待这个空间。

在这里插入图片描述

当以通过float指针pfloat找到这块空间的时候,它会以float的视角来看待这块空间,它会认为这里面放的是浮点数。

在这里插入图片描述

这个E是全零的情况,所以E=-126。

在这里插入图片描述

所以第二个打印结果就是0.000000。

这个二进制序列就是9.0以浮点数的形式存到内存里面的二进制序列。

在这里插入图片描述

当我们以n的形式往外拿,就是以整数的视角来看待上面的二进制序列,以整数的形式往外拿,认为该二进制序列就是补码,又因为它是正数,所以补码就是原码,将原码打印出来。

所以第三个打印结果就是1091567616

当你以浮点数放进去,再以浮点数往外拿的时候,以浮点数视角拿,%f格式打印。

所以第四个打印结果当然就是9.000000。

我们来画图简述一下为什么在内存中值无法精确保存。

在这里插入图片描述

有可能找了100位也没有找到正好是3.14,但是又因为比特位是有限的,所以不能精确保存。但是上面我们所举的例子的数都是非常容易转换成2进制的,是我们特殊找的数。

在这里插入图片描述

后面的10说明它无法精确保存,可能多存一点点或少存一点点,就是不能完整的等于3.14。

4.补充

我们再补充一个问题:浮点数比较相等的时候,怎么写呢?

float a;
float b;
if(a == b)
{}

我们这样写是不准确的。

比如:

在这里插入图片描述
来看怎么解决。

在这里插入图片描述

这个误差取值到底是多少你自己决定,以后浮点数比较相等这样写就可以了。上面的fabs是求浮点数的绝对值的,使用的时候不要忘记加上它的头文件。

最后的最后,感谢支持,对你有用的话,请留下你的:

在这里插入图片描述


http://www.ppmy.cn/devtools/125231.html

相关文章

优达学城 Generative AI 课程3:Computer Vision and Generative AI

文章目录 1 官方课程内容自述第 1 课&#xff1a;图像生成简介第 2 课&#xff1a;计算机视觉基础第 3 课&#xff1a;图像生成与生成对抗网络&#xff08;GANs&#xff09;第 4 课&#xff1a;基于 Transformer 的计算机视觉模型第 5 课&#xff1a;扩散模型第 6 课&#xff0…

树莓派应用--AI项目实战篇来啦-3.OpenCV 读取写入和显示图像

1. 介绍 在计算机视觉和图像处理领域&#xff0c;读取和显示图像是最基础且常见的操作之一&#xff0c;OpenCV作为一个强大的计算机视觉库&#xff0c;提供了丰富的功能来处理图像数据。 读取、显示和写入图像是图像处理和计算机视觉的基础&#xff0c;即使裁剪、调整大…

Vue vben admin开源库中table组件tips

table如何自定义表头和自定义内容 自定义表头直接使用tittle&#xff0c;自定义内容是customRender {title: (<span><img src{alvchat_avatar} style"width:20px;height:20px;vertical-align:bottom"></img>{t(routes.alerts.columnsAIReview)}<…

计算机毕业设计 基于Hadoop的租房数据分析系统的设计与实现 Python毕业设计 Python毕业设计选题 数据分析【附源码+安装调试】

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…

vue3.2实现AES加密解密,秘钥通过API获取,并混淆秘钥,后端thinkphp

aes.ts文件 import CryptoJS from "crypto-js"; import axios from "axios";export const encrypt async(data: any) > {let storeKey sessionStorage.getItem(a)let storeIv:any sessionStorage.getItem(i)// 如果秘钥或 IV 不存在&#xff0c;尝试…

Java->排序

目录 一、排序 1.概念 2.常见的排序算法 二、常见排序算法的实现 1.插入排序 1.1直接插入排序 1.2希尔排序(缩小增量法) 1.3直接插入排序和希尔排序的耗时比较 2.选择排序 2.1直接选择排序 2.2堆排序 2.3直接选择排序与堆排序的耗时比较 3.交换排序 3.1冒泡排序…

从零开始搭建一个node.js后端服务项目

目录 一、下载node.js及配置环境 二、搭建node.js项目及安装express框架 三、集成nodemon&#xff0c;实现代码热部署 四、Express 应用程序生成器 一、下载node.js及配置环境 网上很多安装教程&#xff0c;此处就不再赘述了 版本信息 C:\Users\XXX>node -v v20.15.0…

Cesium实时渲染原理浅析

文章目录 背景Cesium.CallbackProperty(callback, isConstant)原理 背景 在地图的几何编辑场景中&#xff0c;我们通常需要快速渲染拖拽后的几何体&#xff0c;如果通过移除要素再添加要素的逻辑去更新&#xff0c;往往会有较低的效率。Cesium Entity是否提供了更高效的更新接…