PyTorch使用------自动微分模块

devtools/2024/11/14 15:16:35/

5b48cb01f659435cbe69ea1eb0f43faa.jpeg

目录

 

🍔 梯度基本计算

1.1 单标量梯度的计算

1.2 单向量梯度的计算

1.3 多标量梯度计算

1.4 多向量梯度计算

1.5 运行结果💯

🍔 控制梯度计算

2.1 控制不计算梯度

2.2 注意: 累计梯度

2.3 梯度下降优化最优解

2.4 运行结果💯

🍔 梯度计算注意

3.1 detach 函数用法

3.2 detach 前后张量共享内存

3.3 运行结果💯

🍔 小节


 

学习目标

🍀 掌握梯度计算


自动微分(Autograd)模块对张量做了进一步的封装,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,在神经网络的反向传播过程中,Autograd 模块基于正向计算的结果对当前的参数进行微分计算,从而实现网络权重参数的更新。

🍔 梯度基本计算

我们使用 backward 方法、grad 属性来实现梯度的计算和访问.

python">import torch

1.1 单标量梯度的计算

   

python"> # y = x**2 + 20def test01():# 定义需要求导的张量# 张量的值类型必须是浮点类型x = torch.tensor(10, requires_grad=True, dtype=torch.float64)# 变量经过中间运算f = x ** 2 + 20# 自动微分f.backward()# 打印 x 变量的梯度# backward 函数计算的梯度值会存储在张量的 grad 变量中print(x.grad)


1.2 单向量梯度的计算

python"># y = x**2 + 20
def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)# 变量经过中间计算f1 = x ** 2 + 20# 注意:# 由于求导的结果必须是标量# 而 f 的结果是: tensor([120., 420.])# 所以, 不能直接自动微分# 需要将结果计算为标量才能进行计算f2 = f1.mean()  # f2 = 1/2 * x# 自动微分f2.backward()# 打印 x 变量的梯度print(x.grad)

1.3 多标量梯度计算

python"># y = x1 ** 2 + x2 ** 2 + x1*x2
def test03():# 定义需要计算梯度的张量x1 = torch.tensor(10, requires_grad=True, dtype=torch.float64)x2 = torch.tensor(20, requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1**2 + x2**2 + x1*x2# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)


1.4 多向量梯度计算

python">def test04():# 定义需要计算梯度的张量x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)x2 = torch.tensor([30, 40], requires_grad=True, dtype=torch.float64)# 经过中间的计算y = x1 ** 2 + x2 ** 2 + x1 * x2print(y)# 将输出结果变为标量y = y.sum()# 自动微分y.backward()# 打印两个变量的梯度print(x1.grad, x2.grad)if __name__ == '__main__':test04()

1.5 运行结果💯

python">tensor(20., dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor(40., dtype=torch.float64) tensor(50., dtype=torch.float64)
tensor([1300., 2800.], dtype=torch.float64, grad_fn=<AddBackward0>)
tensor([50., 80.], dtype=torch.float64) tensor([ 70., 100.], dtype=torch.float64)

🍔 控制梯度计算

我们可以通过一些方法使得在 requires_grad=True 的张量在某些时候计算不进行梯度计算。

python">import torch

2.1 控制不计算梯度

python">def test01():x = torch.tensor(10, requires_grad=True, dtype=torch.float64)print(x.requires_grad)# 第一种方式: 对代码进行装饰with torch.no_grad():y = x ** 2print(y.requires_grad)# 第二种方式: 对函数进行装饰@torch.no_grad()def my_func(x):return x ** 2print(my_func(x).requires_grad)# 第三种方式torch.set_grad_enabled(False)y = x ** 2print(y.requires_grad)


2.2 注意: 累计梯度

python">def test02():# 定义需要求导张量x = torch.tensor([10, 20, 30, 40], requires_grad=True, dtype=torch.float64)for _ in range(3):f1 = x ** 2 + 20f2 = f1.mean()# 默认张量的 grad 属性会累计历史梯度值# 所以, 需要我们每次手动清理上次的梯度# 注意: 一开始梯度不存在, 需要做判断if x.grad is not None:x.grad.data.zero_()f2.backward()print(x.grad)


2.3 梯度下降优化最优解

python">def test03():# y = x**2x = torch.tensor(10, requires_grad=True, dtype=torch.float64)for _ in range(5000):# 正向计算f = x ** 2# 梯度清零if x.grad is not None:x.grad.data.zero_()# 反向传播计算梯度f.backward()# 更新参数x.data = x.data - 0.001 * x.gradprint('%.10f' % x.data)if __name__ == '__main__':test01()test02()test03()

2.4 运行结果💯

python">True
False
False
False
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)
tensor([ 5., 10., 15., 20.], dtype=torch.float64)

🍔 梯度计算注意

当对设置 requires_grad=True 的张量使用 numpy 函数进行转换时, 会出现如下报错:

Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.

此时, 需要先使用 detach 函数将张量进行分离, 再使用 numpy 函数.

注意: detach 之后会产生一个新的张量, 新的张量作为叶子结点,并且该张量和原来的张量共享数据, 但是分离后的张量不需要计算梯度。

python">import torch

3.1 detach 函数用法

python">def test01():x = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# Can't call numpy() on Tensor that requires grad. Use tensor.detach().numpy() instead.# print(x.numpy())  # 错误print(x.detach().numpy())  # 正确


3.2 detach 前后张量共享内存

python">def test02():x1 = torch.tensor([10, 20], requires_grad=True, dtype=torch.float64)# x2 作为叶子结点x2 = x1.detach()# 两个张量的值一样: 140421811165776 140421811165776print(id(x1.data), id(x2.data))x2.data = torch.tensor([100, 200])print(x1)print(x2)# x2 不会自动计算梯度: Falseprint(x2.requires_grad)if __name__ == '__main__':test01()test02()

3.3 运行结果💯

python">10. 20.]
140495634222288 140495634222288
tensor([10., 20.], dtype=torch.float64, requires_grad=True)
tensor([100, 200])
False

🍔 小节

本小节主要讲解了 PyTorch 中非常重要的自动微分模块的使用和理解。我们对需要计算梯度的张量需要设置 requires_grad=True 属性,并且需要注意的是梯度是累计的,在每次计算梯度前需要先进行梯度清零。

 54b39e35553446379cc448d7586a957b.jpeg

😀 小言在此感谢大家的支持😀 

顺便问一下大佬们,最擅长使用的编程语言是什么呢~

欢迎评论区讨论哦~

 

 


http://www.ppmy.cn/devtools/114955.html

相关文章

Spring MVC 基础 : 文件、cookies的接收 ,REST响应

一、接受文件 在 Spring MVC 中&#xff0c;可以使用 RequestPart 注解来接收文件。这个注解常用于处理复杂的请求&#xff0c;如同时发送 JSON 数据和文件。RequestPart 非常适用于多部分请求&#xff08;multipart requests&#xff09;&#xff0c;这在单个请求中同时发送文…

spring boot admin集成,springboot2.x集成监控

服务端&#xff1a; 1. 新建monitor服务 pom依赖 <!-- 注意这些只是pom的核心东西&#xff0c;不是完整的pom.xml内容&#xff0c;不能直接使用&#xff0c;仅供参考使用 --><packaging>jar</packaging><dependencies><dependency><groupId&g…

HarmonyOS开发实战( Beta5.0)橡皮擦案例实践详解

鸿蒙HarmonyOS开发往期必看&#xff1a; HarmonyOS NEXT应用开发性能实践总结 最新版&#xff01;“非常详细的” 鸿蒙HarmonyOS Next应用开发学习路线&#xff01;&#xff08;从零基础入门到精通&#xff09; 介绍 本示例通过ohos.graphics.drawing库和blendMode颜色混合实…

小阿轩yx-通过state模块定义主机状态

小阿轩yx-通过state模块定义主机状态 前言 前面学习了远程执行模块&#xff0c;这些模块的执行类似语段 shell 脚本&#xff0c;每次执行都会触发一次相同的功能&#xff0c;在大量的 minion 上运行远程命令当然是重要的&#xff0c;但是对于 minion 的环境控制&#xff0c;使…

【Linux庖丁解牛】—Linux基本指令(上)!

&#x1f308;个人主页&#xff1a;秋风起&#xff0c;再归来~&#x1f525;系列专栏&#xff1a; Linux庖丁解牛 &#x1f516;克心守己&#xff0c;律己则安 目录 1、 pwd命令 2、ls 指令 3、cd 指令 4、Linux下的根目录 5、touch指令 6、 stat指令 7、mkdi…

Linux系统中的进程调度队列

目录 一、进程调度队列结构 二、活动队列与过期队列 1.queue[140] 2.bitmap[5] 一、进程调度队列结构 Linux系统中&#xff0c;每一个CPU都有一个进程调度队列runqueue&#xff0c;如图所示 二、活动队列与过期队列 运行队列runqueue中有两个指针*active、*expired。*acti…

堆的向下调整算法和TOPK问题

目录 1.什么是堆&#xff1f; 1.1 向下调整建堆的时间复杂度计算 1.2 堆的结构体设计 2.堆的功能实现&#xff1a; 2.1 堆的插入&#xff1a; 2.2 堆的删除&#xff1a; 2.3 堆排序&#xff1a; 2.4 向下调整建堆&#xff1a; 2.5 TOPK问题&#xff1a; 2.6 向上调整算…

浅析OceanBase数据库的向量化执行引擎

本篇博客是偏数据库系统概念性的内容&#xff0c;不会深入到 OceanBase 中各个算子和表达式的在向量化中的详细设计和实现。 背景 为了提升OceanBase社区版用户解决问题的效率&#xff0c;OceanBase官方不久前推出了《OceanBase 从入门到实践》系列课程。在第七期直播课程后&a…