JZ2440开发板——S3C2440的时钟体系

devtools/2024/10/21 11:45:38/

参考博客

(1)S3C2440-裸机篇-05 | S3C2440时钟体系详解(FCLK、PCLK、HCLK) 

 

一、三种时钟(FCLK、HCLK、PCLK)

如下图所示,S3C2440的时钟控制逻辑,给整个芯片提供三种时钟:

(1)FCLK:用于CPU核;

(2)HCLK:用于接在AHB总线上的设备,比如LCD控制器、存储器控制器、中断控制器、USB主机模块等;

(3)PCLK:用于接在APB总线上的设备,比如看门狗、IIS、I2C、ADC、UART等。

另外由数据手册可知(如下图所示),CPU最大的工作频率可达400MHz,高速设备最大的工作频率可达136MHz,低速设备最大的工作频率是68MHz。 

二、如何产生三种时钟 

由底板原理图可知(如下图所示),时钟源是12MHz的晶振。

如何由12MHz提高到400MHz?这需要使用到 PLL(锁相环)。

我们来看一下时钟产生框图:

由图可知有两个时钟源:一个是晶振提供时钟源,另一个是通过外部引脚提供时钟源。具体选择哪个时钟源,由选择器的OM[3:2]来决定,如下图所示:

由于 OM[3:2] 引脚接地,所以其值为00,则选择晶振作为时钟源,如下所示:

由图可知,S3C2440有两个PLL,分别叫做MPLL(main PLL)、UPLL(usb PLL)。UPLL专用于USB设备,MPLL用于设置FCLK、HCLK、PCLK。它们的设置方法类似,这里以MPLL为例。

上电时,MPLL没被启动,FCLK等于外部输入的时钟(一般是晶振产生的12Mhz时钟),我们称之为Fin。如果要提高系统的时钟,需要使用软件来启用MPLL。其上电时序图如下所示:

(1)LOCKTIME 寄存器:用于设置锁相时间

Fin进入MPLL后,需要经过一定的时长(时长可以通过 LOCKTIME 寄存器进行设置,我们一般使用默认值0xFFFF-FFFF就好),MPLL才能输出倍频后的 FCLK。

(2)MPLLCON 寄存器:用于设置FCLK与Fin的倍数关系

已知给 MPLL 输入的 Fin=12MHz,如果想让MPLL输出的 FCLK = 400MHz(因为CPU最大的工作频率可达400MHz),该如何设置呢?可以通过 MPLLCON 寄存器进行设置。

有如下公式:

从MPLL输出的FCLK = (2*m*Fin)/(p*2^s)m = MDIV(即 MPLLCON[19:12] 的值 )+ 8p = PDIV(即 MPLLCON[9:4] 的值 )+ 2s = SDIV(即 MPLLCON[1:0] 的值 )

数据手册会给出FCLK典型值的设置推荐值,如下图所示,我们编程时使用这些推荐值即可(虽然也可以由公式自己推算)。

(3)CLKDIVN寄存器:用于设置FCLK、HCLK、PCLK的比例

上面已经得到FCLK,那如何由它进一步得到HCLK、PCLK呢?可以将FCLK进行分频,得到HCLK、PCLK,这意味着FCLK、HCLK、PCLK三者存在比例关系。具体的分频系数,可以通过CLKDIVN寄存器进行设置,比如通过 CLKDIVN[2:1] 设置将FCLK分频多少以得到HCLK。

过程总结如下图所示:

三、编程实践

3.1 编程前的分析 

在编程之前,注意数据手册有下面的一段描述:

它表明,如果HDIVN的值不设为0(为0则表示HCLK=FCLK/1,而HCLK一般不等于FCLK,所以一般不会设置为0的),则需要添加上图红框内的代码(注意将“R1_nF…”这个宏转换为实际值)。

假设我们需要设置FCLK=400MHz,HCLK=100MHz,PCLK=50MHz。

则根据第二节的描述,我们需要设置MPLLCON寄存器、CLKDIVN寄存器:

(1)关于MPLLCON寄存器的设置。由于400MHz是典型值, 我们使用数据手册给出的设置:

MDIV(即 MPLLCON[19:12] 的值 ):设置为92(0x5c)

PDIV(即 MPLLCON[9:4] 的值 ):设置为1

SDIV(即 MPLLCON[1:0] 的值 ):设置为1

那么MPLLCON寄存器的值应该设置为:(92<<12)|(1<<4)|(1<<0)

(2)关于CLKDIVN寄存器的设置。

由于 HCLK(100MHz) = FCLK(400MHz) / 4,所以CLKDIVN[2:1] = 0b10;而且CAMDIVN[9]要设置为0(初始值默认也为0,那么设不设置好像都行)。

由于 PCLK(50MHz) = HCLK(100MHz) / 2,所以CLKDIVN[0] = 1;

综合起来,CLKDIVN寄存器要设置为0b101=0x5。

 

3.2 编程实践

完整的代码见链接(课程提供的代码):

(1)其中start.S文件内容如下(我仿写的):

.text
.global _start_start://关看门狗ldr r0,=0x53000000ldr r1,=0str r1,[r0]/*******************************************/	//设置HDIV、PDIV的分频系数,使得FCLK : HCLK : PCLK=400:100:50//通过寄存器CLKDIVN来设置分频系数ldr r0,=0x4c000014ldr r1,=0x5str r1,[r0]//设置CPU工作于异步模式mrc p15,0,r0,c1,c0,0orr r0,r0,#0xc0000000 //R1_nF:OR:R1_iA的值为0xc0000000mcr p15,0,r0,c1,c0,0//设置MPLL的锁相时间/* LOCKTIME(0x4C000000) = 0xFFFFFFFF */ldr r0, =0x4C000000ldr r1, =0xFFFFFFFFstr r1, [r0]//设置MPLL,使它输出400MHzldr r0,=0x4c000004ldr r1,=(92<<12)|(1<<4)|(1<<0)str r1,[r0]
/******************************************************///设置栈/*判断nor/nand启动方式,并设置相应的栈*如何判断启动方式:写0到0地址,然后再读出来,*如果得到0,则表示地址0的内容被修改了,它对应着sram,意味着nand启动*否则为nor启动(因为nor不能直接写)*///ldr r0,[0]  //读出原来的值进行备份mov r1,#0ldr r0,[r1]str r1,[r1] //将0写到0地址ldr r2,[r1] //将0地址的内容读出来cmp r1,r2   // r1==r2? 如果相等则表示是nand启动ldr sp,=0x4000000+0x1000 //先假设是nor启动(nor启动时,内部的SRAM映射到0x40000000,4096=0x1000)moveq sp,#4096 //如果相等则表示nand启动,将sp指向内部SRAM的最高地址处streq r0,[r1]  //如果相等则表示nand启动,恢复原来的值bl mainhalt:b halt

(2)led.c文件的内容如下(我仿写的):

#include "s3c2440_soc.h"void delay(volatile int d)
{while (d--);
}int main(void)
{//设置GPFCON让GPF4/5/6配置为输出引脚GPFCON &= ~((3<<8)|(3<<10)|(3<<12));//先清零GPFCON |= ((1<<8)|(1<<10)|(1<<12));//置位,设置为输出引脚GPFDAT=0xff;//全部熄灭//循环点亮while(1){GPFDAT=0xff;//全部熄灭GPFDAT=0xef;//让LED1亮delay(100000);GPFDAT=0xff;//让LED1灭GPFDAT=0xdf;//让LED2亮delay(100000);GPFDAT=0xff;//让LED2灭GPFDAT=0xbf;//让LED4亮delay(100000);}return 0;
}//课程的版本
#if 0int main(void)
{int val = 0;  /* val: 0b000, 0b111 */int tmp;/* 设置GPFCON让GPF4/5/6配置为输出引脚 */GPFCON &= ~((3<<8) | (3<<10) | (3<<12));GPFCON |=  ((1<<8) | (1<<10) | (1<<12));/* 循环点亮 */while (1){tmp = ~val;tmp &= 7;GPFDAT &= ~(7<<4);GPFDAT |= (tmp<<4);delay(100000);val++;if (val == 8)val =0;}return 0;
}#endif

 代码依据是数据手册与原理图中的相关内容,如下所示:

由下面的原理图可知,GPF4~GPF6引脚输出低电平时,对应的LED1、LED2、LED4会亮。

 

3.3 现象与分析

1、在课程提供的代码(见上面提到的链接)目录下执行make时,在进行链接时报错:

xjh@ubuntu:~/iot/embedded_basic/jz2440/armBareMachine/clk$ make
arm-linux-gcc -c -o led.o led.c
arm-linux-gcc -c -o start.o start.S
arm-linux-ld -Ttext 0 led.o start.o -o led.elf
led.o:(.ARM.exidx+0x0): undefined reference to `__aeabi_unwind_cpp_pr0'
led.o:(.ARM.exidx+0x8): undefined reference to `__aeabi_unwind_cpp_pr1'
make: *** [all] Error 1
xjh@ubuntu:~/iot/embedded_basic/jz2440/armBareMachine/clk$

解决方法是在 arm-linux-gcc 命令加上 -nostdlib 这个选项。它表示不链接系统标准启动文件和标准库文件,只把指定的文件传递给连接器。这个选项常用于编译内核、bootloader等程序,它们不需要启动文件、标准库文件(书P35)。

回顾一下朱的裸机课程,如果 arm-linux-ld 时只有一个待连接的.o文件,Makefile中的arm-linux-gcc命令不需要加上 -nostdlib 这个选项(比如chapter4->8.leds.s),如果有两个待链接的.o文件,则需要加上该选项(比如chapter5->3.set_sp_s及以后的裸机程序)。

这里韦的课程为何不加呢?估计与我环境不一样?

2、一些编程注意事项

(1) &=,这两个符号不能有空格,即不能写成“& =”

GPFCON & = ~((3<<8)|(3<<10)|(3<<12)); //会报错

 (2)Makefile文件中arm-linux-ld时,.o文件第一个必须是start.o文件!否则可以连接成功,但烧写到开发板后没有现象。

(3)直接写成 ldr r0,[0] 貌似会报错,要写成:

mov r1,#0
ldr r0,[r1]

(4)课程的led.c文件用的是位操作,我没有仔细分析其代码,而是直接赋值修改。有时间分析一下其代码。

3、烧写现象

以NorFlash启动,在uboot的shell界面下按“n”,使用“usb下载线+dnw”方式将生成的led.bin烧写到NandFlash中。然后改为NandFlash启动,可以看见三颗LED灯在快速地循环点亮。

 如果将start.S文件中两条“/**************/”之间的内容(也就是时钟初始化部分)删掉,重新编译烧写运行,可以看见三颗LED灯依然在循环点亮,但速度明显慢许多!(此时FCLK应该是12MHz,而HCLK与PCLK又是多少呢?)

四、总结

1、深入讲解了S3C2440芯片的结构

掌握了S3C2440的时钟体系架构和上电复位时序,其时钟源有两个:外部晶振或者外部时钟,通过OM[3:2]硬件选择;其内部主要调整频率的PLL有两个:MPLL(产生FCLK)和UPLL(产生UCLK);其主要的时钟频率有三个(FCLK->CPU使用,HCLK->AHB总线高速外设使用,PCLK->APB总线低速外设使用),其中HCLK和PCLK由FCLK分频而来。

2、学习了如何进行芯片操作

掌握了如何编程设置寄存器控制S3C2440的时钟频率,比如本节设置FCLK=400Mhz,HCLK=100Mhz,PCLK=50Mhz。

3、其他一些启发

可以关闭某些模块的时钟,以达到省电的目的。 比如设置CLKCON寄存器来关闭某些模块。


http://www.ppmy.cn/devtools/113397.html

相关文章

Rust在Web开发中的优势是什么?

作为一种系统级编程语言&#xff0c;Rust在安全性和性能方面拥有得天独厚的优势&#xff0c;使其在Web开发领域展现出强大的竞争力。 1. 内存安全&#xff1a;告别内存泄漏和缓冲区溢出 Rust的核心优势之一就是其强大的内存安全机制。通过所有权系统和借用检查器&#xff0c;…

图论篇--代码随想录算法训练营第五十八天打卡|拓扑排序,dijkstra(朴素版),dijkstra(堆优化版)精讲

拓扑排序 题目链接&#xff1a;117. 软件构建 题目描述&#xff1a; 某个大型软件项目的构建系统拥有 N 个文件&#xff0c;文件编号从 0 到 N - 1&#xff0c;在这些文件中&#xff0c;某些文件依赖于其他文件的内容&#xff0c;这意味着如果文件 A 依赖于文件 B&#xff0…

PyQt5-loading-圆环加载效果

效果预览 代码实现 from PyQt5.QtCore import QSize, pyqtProperty, QTimer, Qt, QThread, pyqtSignal from PyQt5.QtGui import QColor, QPainter from PyQt5.QtWidgets import QApplication, QWidget, QHBoxLayout, QPushButton, QVBoxLayout, QLabel, QGridLayoutclass Cir…

WebSocket 协议

原文地址&#xff1a;xupengboo WebSocket WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议。 在 WebSocket API 中&#xff0c;浏览器和服务器只需要完成一次握手&#xff0c;两者之间就直接可以创建持久性的连接&#xff0c;并进行双向数据传输。…

8.1 溪降技术:横渡绳

目录 8.1 横渡绳将其置于上下文中&#xff1a;观看视频课程电子书&#xff1a;横渡绳一级横渡绳&#xff1a;识别使用横渡绳固定到横渡绳V7提示&#xff1a;保持张力中间点通过横渡绳上的中间点固定到锚点总结 8.1 横渡绳 绳上移动 横渡绳是一条水平安全绳&#xff0c;探险者可…

2024自学手册——网络安全(黑客技术)

&#x1f91f; 基于入门网络安全/黑客打造的&#xff1a;&#x1f449;黑客&网络安全入门&进阶学习资源包 前言 什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、…

51单片机-AT24C02-实验2-秒表实验(可参考上一节)

利用定时器去对按键和数码管进行扫描(Whappy) main.c #include <REGX52.H> #include "LCD1602.h" #include "AT24C02.h" #include "Delay.h" #include "Timer0.h" #include "Nixie.h" #include "Key.h"un…

VMware Fusion虚拟机Mac版 安装Win10系统教程

Mac分享吧 文章目录 Win10安装完成&#xff0c;软件打开效果一、VMware安装Windows10虚拟机1️⃣&#xff1a;准备镜像2️⃣&#xff1a;创建虚拟机3️⃣&#xff1a;虚拟机设置4️⃣&#xff1a;安装虚拟机&#xff08;步骤和Win11安装步骤类似&#xff0c;此处相同步骤处没换…