毕设开源 LSTM股价预测

server/2024/12/21 22:30:23/

0 简介

今天学长向大家介绍一个机器视觉的毕设项目

毕业设计项目分享 LSTM股价预测

项目运行效果:

毕业设计 lstm股价预测

🧿 项目分享:见文末!

1 LSTM 神经网络

长短期记忆 (LSTM) 神经网络属于循环神经网络 (RNN) 的一种,特别适合处理和预测与时间序列相关的重要事件。以下面的句子作为一个上下文推测的例子:


“我从小在法国长大,我会说一口流利的??”

由于同一句话前面提到”法国“这个国家,且后面提到“说”这个动作。因此,LSTM便能从”法国“以及”说“这两个长短期记忆中重要的讯号推测出可能性较大的”法语“这个结果。

K线图与此类似,股价是随着时间的流动及重要讯号的出现而做出反应的:

  • 在价稳量缩的盘整区间中突然出现一带量突破的大红K,表示股价可能要上涨了

  • 在跳空缺口后出现岛状反转,表示股价可能要下跌了

  • 在连涨几天的走势突然出现带有长上下影线的十字线,表示股价有反转的可能

LSTM 要做的事情就是找出一段时间区间的K棒当中有没有重要讯号(如带量红K)并学习预测之后股价的走势。

2 LSTM 股价预测实例

数据是以鸿海(2317)从2013年初到2017年底每天的开盘价、收盘价、最高价、最低价、以及成交量等数据。

34e237e272214828b2bd563dab859c02.png

首先将数据写入并存至pandas的DataFrame,另外对可能有N/A的row进行剔除:

数据写入:

python">    import pandas as pdfoxconndf= pd.read_csv('./foxconn_2013-2017.csv', index_col=0 )foxconndf.dropna(how='any',inplace=True)

為了避免原始数据太大或是太小没有统一的范围而导致 LSTM 在训练时难以收敛,我们以一个最小最大零一正规化方法对数据进行修正:

python">    from sklearn import preprocessingdef normalize(df):newdf= df.copy()min_max_scaler = preprocessing.MinMaxScaler()newdf['open'] = min_max_scaler.fit_transform(df.open.values.reshape(-1,1))newdf['low'] = min_max_scaler.fit_transform(df.low.values.reshape(-1,1))newdf['high'] = min_max_scaler.fit_transform(df.high.values.reshape(-1,1))newdf['volume'] = min_max_scaler.fit_transform(df.volume.values.reshape(-1,1))newdf['close'] = min_max_scaler.fit_transform(df.close.values.reshape(-1,1))return newdffoxconndf_norm= normalize(foxconndf)

22cff33efbdd7a880c06967dd6f675c9.png

然后对数据进行训练集与测试集的切割,另外也定义每一笔数据要有多长的时间框架:

import numpy as np
def data_helper(df, time_frame):

3 数据维度: 开盘价、收盘价、最高价、最低价、成交量, 5维

number_features = len(df.columns)

# 将dataframe 转换为 numpy array
datavalue = df.as_matrix()result = []
# 若想要观察的 time_frame 為20天, 需要多加一天作为验证答案
for index in range( len(datavalue) - (time_frame+1) ): # 从 datavalue 的第0个跑到倒数第 time_frame+1 个result.append(datavalue[index: index + (time_frame+1) ]) # 逐笔取出 time_frame+1 个K棒数值做為一笔 instanceresult = np.array(result)
number_train = round(0.9 * result.shape[0]) # 取 result 的前90% instance 作为训练数据x_train = result[:int(number_train), :-1] # 训练数据中, 只取每一个 time_frame 中除了最后一笔的所有数据作为feature
y_train = result[:int(number_train), -1][:,-1] # 训练数据中, 取每一个 time_frame 中最后一笔数据的最后一个数值(收盘价)作为答案# 测试数据
x_test = result[int(number_train):, :-1]
y_test = result[int(number_train):, -1][:,-1]# 将数据组成变好看一点
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], number_features))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], number_features))  return [x_train, y_train, x_test, y_test]

4 以20天为一区间进行股价预测

python">X_train, y_train, X_test, y_test = data_helper(foxconndf_norm, 20)

我们以 Keras 框架作为 LSTM 的模型选择,首先在前面加了两层 256个神经元的 LSTM
layer,并都加上了Dropout层来防止数据过度拟合(overfitting)。最后再加上两层有不同数目神经元的全连结层来得到只有1维数值的输出结果,也就是预测股价:

python">    from keras.models import Sequentialfrom keras.layers.core import Dense, Dropout, Activationfrom keras.layers.recurrent import LSTMimport kerasdef build_model(input_length, input_dim):d = 0.3model = Sequential()model.add(LSTM(256, input_shape=(input_length, input_dim), return_sequences=True))model.add(Dropout(d))model.add(LSTM(256, input_shape=(input_length, input_dim), return_sequences=False))model.add(Dropout(d))model.add(Dense(16,kernel_initializer="uniform",activation='relu'))model.add(Dense(1,kernel_initializer="uniform",activation='linear'))model.compile(loss='mse',optimizer='adam', metrics=['accuracy'])return model# 20天、5维model = build_model( 20, 5 )

建立好 LSTM 模型后,我们就用前面编辑好的训练数据集开始进行模型的训练:LSTM 模型训练

python">    # 一个batch有128个instance,总共跑50个迭代model.fit( X_train, y_train, batch_size=128, epochs=50, validation_split=0.1, verbose=1)![dccbe8900b82f436d5a68d991f80179d.png](https://img-
blog.csdnimg.cn/img_convert/dccbe8900b82f436d5a68d991f80179d.png)

在经过一段时间的训练过程后,我们便能得到 LSTM
模型(model)。接着再用这个模型对测试数据进行预测,以及将预测出来的数值(pred)与实际股价(y_test)还原回原始股价的大小区间:

LSTM 模型预测股价及还原数值

python">def denormalize(df, norm_value):original_value = df['close'].values.reshape(-1,1)norm_value = norm_value.reshape(-1,1)min_max_scaler = preprocessing.MinMaxScaler()min_max_scaler.fit_transform(original_value)denorm_value = min_max_scaler.inverse_transform(norm_value)return denorm_value
python"># 用训练好的 LSTM 模型对测试数据集进行预测
pred = model.predict(X_test)# 将预测值与实际股价还原回原来的区间值
denorm_pred = denormalize(foxconndf, pred)
denorm_ytest = denormalize(foxconndf, y_test)

5 LSTM 预测股价结果

让我们把还原后的数值与实际股价画出来,看看效果如何:

LSTM 预测股价结果

python">   import matplotlib.pyplot as plt%matplotlib inline  plt.plot(denorm_pred,color='red', label='Prediction')plt.plot(denorm_ytest,color='blue', label='Answer')plt.legend(loc='best')plt.show()

如下图,蓝线是实际股价、红线是预测股价。虽然整体看起来预测股价与实际股价有类似的走势,但仔细一看预测股价都比实际股价落后了几天。

a027b84016ac466f1c1080ccc5b29609.png

所以我们来调整一些设定:

  • 时间框架长度的调整

  • Keras 模型里全连结层的 activation 与 optimizaer 的调整

  • Keras 模型用不同的神经网路(种类、顺序、数量)来组合batch_size 的调整、epochs 的调整 …

经过我们对上述的几个参数稍微调整过后,我们就得到一个更贴近实际股价的预测结果啦。

078c084247663d489d0d908d3c20d174.png

在这里插入图片描述

6 完整工程项目

🧿 项目分享:见文末!


http://www.ppmy.cn/server/130522.html

相关文章

C# Take<TSource>(IEnumerable<TSource>, Range) 关于 Range

new Range(startIndex, endIndex) : 注意输出结果是不包含 endIndex 的 C#8中的Range和Index(范围和索引) - 过千帆 - 博客园

pycharm 远程ssh时,mujuco提示mujoco.FatalError: gladLoadGL error

在ubuntu系统运行时完全没问题,但是使用pycharm远程ssh登录时就会提示这个。 解决方法: 1. 可以修改环境变量 2. export LD_PRELOAD/usr/lib/x86_64-linux-gnu/libstdc.so.6 参考【Mujuco】WSL2安装Mujoco用于python,遇到FatalError,以及图形驱动架构…

10、论文阅读:基于双阶对比损失解纠缠表示的无监督水下图像增强

Unsupervised Underwater Image Enhancement Based on Disentangled Representations via Double-Order Contrastive Loss 前言引言方法介绍解耦框架多尺度生成器双阶对比损失双阶对比损失总结损失函数实验前言 在水下环境中拍摄的图像通常会受到颜色失真、低对比度和视觉质量…

微软推出最新 Azure 虚拟机 ND H200 v5 系列

声明:本文翻译自微软全球官方博客,ND H200 v5 系列虚拟机目前只在 Microsoft Azure 海外版上发布。 随着人工智能领域的高速发展,企业对于可扩展和高性能基础设施的需求呈指数级增长。客户需要 Azure AI 基础设施来开发智能驱动的创新解决方案…

PHP:下拉列表,颜色展示

PHP展示下拉列表,选项设置为数据库存储颜色进制,colorname是颜色名称,color是颜色进制 一、表结构 produce_info_nav1_colorshow produce_info_nav1 二、核心代码 //查询对应默认颜色 $sql_selcolor "SELECT color FROM produce_i…

鼠标右键删除使用Visual Studio 打开(v)以及恢复【超详细】

鼠标右键删除使用Visual Studio 打开(v) 1. 引言2. 打开注册表3. 进入对应的注册表地址4. 右键删除 AnyCode 项5. 效果6. 备份注册表文件——恢复菜单 1. 引言 安装完 Visual Studio 鼠标右键总有 “使用Visual Studio 打开(v)”,让右键菜单…

2024中国电信天翼云社招TAS人才测评题型分析、真题解密、高分技巧、测评题库

测评项目名称:中国电信天翼云社会招聘人才测评 测评时间:2024年 测评内容: Talent5大五职业性格测评 iLogic言语推理测评(简版) iLogic数字推理测评(简版) iLogic逻辑推理测评(…

高效微调理解(prompt-tuning,p-tuning v1,p-tuning v2,lora)

高效微调(prompt-tuning,p-tuning v1,p-tuning v2,lora) 1.prompt-tuning: 例子理解;保持原本模型参数不变,通过训练提示词的参数调整prompt,使其与下游任务匹配。 例子…