学习STM32第十五天

ops/2024/10/27 22:25:08/

SPI外设

一、简介

STM32F4XX内部集成硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU负担,可配置8位/16位数据帧,高位(最常用)/低位先行,三组SPI接口,支持DMA

SPI框图
由上图可知SPI是通过接收/发送缓冲区移位寄存器进行通信,其中SPI1是在APB2总线,SPI2、SPI3在APB1总线。发送和接收共用一个SR,即SPI是同步通信接口。SS引脚一般用GPIO口指定从机,硬件NSS引脚一般是用来配置多主机模式。
发送:数据先进入TDR,经SR通过MOSI向从机输出
接收:数据由MISO进入SR,然后经过RDR向地址数据总线输出
由此可对上面SPI框图进行简化,基本结构如下
SPI基本结构
这里给出SPI主模式全双工连续传输模式下的时序图,SPI主模式全双工
上图选择的是模式3,SCK高电平为空闲状态,在SCK第一个边沿移出数据,第二个编译移入数据。上面时序图采用小端模式,低位先行,这里对进行分析
发送:

  • SS置低电平,开始时序,选中从机。此时TXE = 1,TDR为空;RXNE = 0,RDR为空。BSY = 1
  • 软件写入0xF1到SPI_DR,即要发送的第一个数据,此时TXE = 0,RXNE = 0,TDR非空
  • TDR中的0xF1会立刻转入到SR中,TDR清空,MOSI开始发送同时TXE = 1
  • 软件等待TXE = 1,然后写入0xF2到SPI_DR,即要发送的第二个数据,此时TXE = 0,RXNE = 0
  • TDR中的0xF2会随后自动进入SR,MOSI在发送完第一个数据会自动发送第二个数据
  • TDR发送完所有数据,TXE会自动置1,SR发送完所有数据后,BSY = 0

接收:

  • SS置低电平,开始时序,选中从机。此时TXE = 1,TDR为空;RXNE = 0,RDR为空。BSY = 1
  • MISO依次接收从机的数据,输出到SR
  • SR中的数据以小端模式进入到SPI_DR中
  • 软件等待RXNE = 1,然后数据总线读取RDR中的数据0xA1,同时RXNE = 0,RDR变为空
  • MISO接收第二个数据,输出到SR
  • SR中的第二个数据以小端模式进入到SPI_DR中
  • 软件等待RXNE = 1,然后数据总线读取RDR中的第二个数据,同时RXNE = 0,RDR变为空
  • RDR接收完所有数据,RXNE = 0

由上图可知,SPI全双工连续通信是交叉进行的,发送数据1,发送数据2,再接收数据1;发送数据3,再接收数据2;在时序上要求操作之间的间隙非常小。
SPI非连续全双工通信
非连续传输模式,只需要四行代码。上图是SPI模式3,SCK高电平为空闲状态,分析如下

  • SS置低电平,选中从机,开始时序此时TXE = 1,RXNE = 0,TDR为空
  • 软件写入0xF1到SPI_DR,此时TDR = 0xF1,TXE = 0
  • TDR中的0xF1立即进入SR中,MOSI开始发送0xF1,TDR清空,TXE = 1
  • 等待MOSI将第一个字节数据发送完毕,此时接收第一个字节数据的时序也完成,即RXNE = 1
  • 读取接收到的第一个字节数据,然后将第二个字节数据写入TDR,开始发送第二个数据
  • 等待MOSI发送完第二个字节数据,此时接收到了第二个字节数据
  • 读取完第二个字节数据,然后将第三个字节数据写入TDR,开始发送第三个数据

整体流程就是:等待TXE = 1,写入数据到TDR,等待RXNE = 1,读取RDR数据。这样实现发送数据1接收数据1,发送数据2接收数据2。但是字节之间存在一定的间隙,降低传输效率。

二、实验案例

进行STM32F4XX对板载W25Q16读写,代码如下

#include "stm32f4xx.h"                  // Device header//硬件SPI通信,采用非连续传输方案
/*PB0引脚模拟SS输出*/
void MySPI_W_SS(uint8_t BitValue)
{GPIO_WriteBit(GPIOB, GPIO_Pin_0, (BitAction)BitValue);//片选引脚输出
}/*SS->PB0,MISO->PB4,MOSI->PB5,SCK->PB3,板载W25Q16支持SPI模式0和模式3*/
/*
*	SPI1是在APB2总线,SPI2、SPI3在APB1总线
*	PB3: SPI1_SCK、SPI3_SCK
*	PB4: SPI1_MISO、SPI3_MISO
*	PB5: SPI1_MOSI、SPI3_MOSI
*	PB0: 使用GPIO模拟SS
*/
void MySPI_Init()
{RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE);RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5;	//PB3复用为SPI1_SCK,PB4复用为SPI1_MISO,PB5复用为SPI1_MOSIGPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;				//使用GPIO模拟片选信号SSGPIO_Init(GPIOB, &GPIO_InitStructure);GPIO_PinAFConfig(GPIOB, GPIO_PinSource3, GPIO_AF_SPI1);	//GPIO引脚复用GPIO_PinAFConfig(GPIOB, GPIO_PinSource4, GPIO_AF_SPI1);GPIO_PinAFConfig(GPIOB, GPIO_PinSource5, GPIO_AF_SPI1);//SPI配置SPI_InitTypeDef SPI_InitStructure;SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;SPI_InitStructure.SPI_CRCPolynomial = 7;				//CRC校验根据实际需求填写SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//数据帧大小SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;//全双工SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;		//高位先行SPI_InitStructure.SPI_Mode = SPI_Mode_Master;			//这里选择主机SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;				//软件模拟片选SSSPI_Cmd(SPI1, ENABLE);//	MySPI_W_SS(1);											//默认是终止条件
}/*起始条件*/
void MySPI_Start()
{MySPI_W_SS(0);
}
/*终止条件*/
void MySPI_End()
{MySPI_W_SS(1);
}
/*交换一个字节,这里选择模式0*/
/*			SCK低电平为空闲状态
*	SS下降沿启动,主机移出高位数据到MOSI
*	SCK上升沿,主机移入高位数据MISO
*	SCK下降沿,主机移出高位数据MOSI
*			非连续传输需要四步
*/
uint8_t MySPI_SwapByte_Mode0(uint8_t ByteSend)
{while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);	//等待TXE = 1SPI_I2S_SendData(SPI1, ByteSend);								//将数据写入到DR中while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET);	//等待RXNE = 1return SPI_I2S_ReceiveData(SPI1);								//读取RDR的数据
}

http://www.ppmy.cn/ops/6232.html

相关文章

本地消息表模式保障分布式系统最终一致性

系统架构说明 状态转换说明 订单表消息表process_queue库存系统return_queue说明成功失败///订单库回滚成功成功失败//订单系统重发消息成功成功成功失败/Broker自动重试,注意接口幂等成功成功成功库存不足退回/Broker通知回掉,订单/消息作废成功成功成…

MapReduce工作流程(Hadoop3.x)

MapReduce 是一种用于并行处理大规模数据集的——编程模型和处理框架。它通常用于分布式计算环境中,如Apache Hadoop。 工作流程 1. 切分阶段(Splitting): 数据集被分成多个数据块,每个数据块的大小通常在64MB到12…

MySQL数据库——12、UNION 操作符

在 MySQL 中 UNION 操作符用于合并两个或多个 SELECT 语句的结果集,并去除重复的行。UNION 操作符可以将多个 SELECT 查询的结果合并成一个结果集,并且对结果进行排序。 SELECT column1, column2, ... FROM table1 UNION SELECT column1, column2, ... …

谷歌google广告新手教程,看这一篇就足够!

谷歌Google广告是企业触达广大潜在客户、推动业务增长的强大渠道,对于初涉此领域的广告新手而言,掌握谷歌广告的基本操作、策略规划到优化技巧,无疑是开启成功营销之旅的关键。本文不仅为您提供一份详尽的谷歌广告入门指南,还将特…

【AI】本地部署可以与文件沟通的GPT:Llama 2 + GPT4All + Chroma

【背景】 还是继续致力于实践可以保护数据隐私的本地化LLM部署。 这次用的是Llama 2 + GPT4All + Chroma实现RAG。 【概念】 基于LangChain模板的各个部分的作用: Llama2-》语言模型管理GPT4ALL-》embeddingChroma-》文件内容的向量存储,作为内部知识库,不需要网络就可以…

云原生:10分钟了解一下Kubernetes架构

Kubernetes,作为当今容器编排技术的事实标准,以其强大的功能和灵活的架构设计,在全球范围内得到了广泛的应用和认可。本文将深入简出地探讨Kubernetes的核心架构,帮助大家了解Kubernetes,为今后的高效的学习打下良好的…

软考 - 系统架构设计师 - 嵌入式真题

问题 1: (1).HTML 静态化:可以实现对系统经常访问的页面进行静态化以提高系统访问的效率,但系统页面通常需要数据库中的用户信息和用户选择来动态显示,因此不适合采用。 HTML 静态化: 将动态生成…

FTP客户端Transmit 5 for Mac中文激活版

Transmit 5是一款功能强大的Mac FTP客户端软件,它由Panic公司开发,为用户提供简单、高效的文件传输体验。 Transmit 5 for Mac中文激活版下载 Transmit 5支持多种传输协议,如FTP、SFTP、WebDAV和Amazon S3等,满足用户不同的文件传…