python使用opencv对图像的基本操作(2)

ops/2025/2/20 1:51:15/

13.对多个像素点进行操作,使用数组切片方式访问

img[i,:] = img[j,:]
#将第j行的数值赋值给第i行
img[-2,:]或img[-2]
#倒数第二行
img[:,-1]
#最后一列
img[50:100,50:100]
#50-100行,50-100列(不包括第100行和第100列)
img[:100,:50].sum()
#计算前100行、前50列所有的数值的和
img[i].mean()
#第i行所有数值的平均值

对多个像素点进行操作,特别是图像处理领域,使用数组切片方式访问是一种非常高效的方法。数组切片允许开发者通过简单的语法获取数组中的一段连续元素,这些元素可以是一个像素点的颜色信息,例如在RGB图像中,一个像素点由红、绿、蓝三个颜色通道的值组成。
运行结果:

14.将图片进行二值化

二值化:是图像分割的一种最简单的方法。二值化可以把灰度图像转换成二值图像。把大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化。

from skimage import io,data,color
img = io.imread('lbxx.jpg')
img_gray=color.rgb2gray(img)    #将RGB图像转换为灰度图像
rows,cols=img_gray.shape
for i in range(rows):for j in range(cols):if (img_gray[i,j]<=0.5):  #128/255img_gray[i,j]=0else:img_gray[i,j]=1
io.imshow(img_gray)

运行结果:
在这里插入图片描述
注:color.rgb2gray: 这是 Scikit-image 库中 color 模块的一个函数,用于将RGB彩色图像转换为灰度图像。灰度图像是单通道的,每个像素的值代表该点的亮度,范围通常是0到1,其中0表示黑色,1表示白色,0.5表示灰色。

15.将图片进行归一化

归一化:图像归一化是指对图像进行了一系列标准的处理变换,使图像变换为一个固定标准形式的过程。

from skimage import exposure, io
# 读取图像
image = io.imread('lbxx.jpg')
# 归一化处理
normalized_image = exposure.rescale_intensity(image, in_range='image', out_range=(0, 0.4))
io.imshow(normalized_image)
io.show()

运行结果:
在这里插入图片描述
在这里插入图片描述
注:图片归一化是图像处理中的一种常见技术,它将图像的像素值映射到一个特定的范围,通常是[0, 1]或[-1, 1]。

15.1线性归一化

定义:是一种常见的数据预处理方法,也被称为 Min-Max 归一化。 它通过对原始数据进行线性变换,将其缩放到特定的范围内,常用的是将数据缩放到 [0, 1] 或 [-1, 1] 范围内。

image = io.imread('1.jpg')
normalized_image = (image - np.min(image)) / (np.max(image) - np.min(image))
io.imshow(normalized_image)

运行结果:
在这里插入图片描述
注:
线性归一化到[0, 1]区间:
normalized_image = (image - min_val) / (max_val - min_val)
线性归一化到[-1, 1]区间:
normalized_image = 2 * (image - min_val) / (max_val - min_val) - 1

15.2均值方差归一化:

将图像的像素值减去均值后,除以标准差,使得图像的均值为0,标准差为1。这样可以降低图像数据的偏差和差异性。

import numpy as np
# image为array类型,多少维度都无所谓,直接操作全部元素
image2 = (image - np.min(image)) / (np.max(image) - np.min(image))
io.imshow(image2)

运行结果:
在这里插入图片描述

15.3直方图均值化

通过重新分布图像像素的直方图,增强图像的对比度和细节。这在图像增强和图像识别等领域非常有用。

from skimage import exposure
equalized_image = exposure.equalize_hist(image)
io.imshow(equalized_image)

运行结果:

在这里插入图片描述

15.4.改变通道颜色

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,0] >170
img[a] = [0, 255, 0] #红色
io.imshow(img)

注:这段代码的作用是将图像中红色通道值大于170的像素染成绿色,并显示结果。
运行结果:
在这里插入图片描述

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,1] >170
img[a] = [0, 255, 0] #绿色
io.imshow(img)

运行结果:
在这里插入图片描述

from skimage import io,data
img=io.imread('lbxx.jpg')
a = img[:,:,2] >170
img[a] = [0, 0, 255] #蓝色
io.imshow(img)

运行结果:
在这里插入图片描述

16.图像数据类型及转换

在这里插入图片描述

16.1.查看数据类型

from skimage import io,data
img=io.imread('lbxx.jpg')
print(img.dtype.name)

注:print(img.dtype.name)这行代码打印出图像数组的数据类型,type.name则给出了这个数据类型的字符串表示;uint8,表示数组中的每个元素都是一个8位的无符号整数,取值范围从0到255。
运行结果:

在这里插入图片描述

16.2unit8转float

from skimage import io,data,img_as_float
import numpy as np
img=io.imread('lbxx.jpg')
print(img)
print(img.dtype.name)
dst=img_as_float(img)
print(dst.dtype.name)
print(dst)

注:dst=img_as_float(img)这行代码将图像转换为浮点数表示。这意味着图像中的每个像素值将被转换为0.0到1.0之间的浮点数。

运行结果:
在这里插入图片描述

16.3.float转uint8

from skimage import img_as_ubyte
import numpy as np
img = np.array([0, 0.5, 1], dtype=float)
print(img.dtype.name)
dst=img_as_ubyte(img)
print(dst.dtype.name)
print(dst)

注:img = np.array([0, 0.5, 1], dtype=float)这行代码创建一个包含三个浮点数的一维数组,这三个数分别是0, 0.5, 和1。数组的类型被指定为float。
运行结果:

在这里插入图片描述


http://www.ppmy.cn/ops/18336.html

相关文章

论文解读:(CAVPT)Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model

v1文章名字&#xff1a;Dual Modality Prompt Tuning for Vision-Language Pre-Trained Model v2文章名字&#xff1a;Class-Aware Visual Prompt Tuning for Vision-Language Pre-Trained Model 文章汇总 对该文的改进&#xff1a;论文解读&#xff1a;(VPT)Visual Prompt …

JavaScript-3(内置对象+数组对象+字符串对象)

目录 1.预解析 2.对象 什么是对象 创建对象的三种方法 利用字面量创建方法 利用new Object创建对象 构造函数创建对象 new关键字 遍历对象 3.内置对象 Math对象 Math概述 Math随机数 Date日期对象 格式化日期 Date总的时间毫秒 4.数组对象 创建数组的两种方式…

一篇文章带您了解java的API-String

1.为什么要学习字符串的处理&#xff1f; 在开发中需要大量的使用字符串&#xff0c;比如登录注册&#xff0c;留言之类的。 根据java的api文档中可知&#xff0c;String类表示字符串&#xff0c;java中的所有字符串都实现为此类的实例。 字符串是不变的&#xff0c;他们的值…

数据分析:转录组分析-kallisto或salmon的RNA-seq流程

RNA-seq pipeline through kallisto or salmon kallisto 和salmon相比含有hisat2和STAR等软的RNA-seq流程而言&#xff0c;速度更快&#xff0c;这是因为该软件基于转录组序列reference&#xff08;也即是cDNA序列&#xff09;并且基于k mer比对原理。通常如果想研究RNA-seq过…

Unreal Engine子类化系统UButton

UE系统Button点击事件无法传递参数&#xff0c;通过子类化系统Button添加自定义参数扩展实现Button点击事件参数传递点击C类文件夹&#xff0c;在右边的区域点击鼠标右键&#xff0c;在弹出的菜单中选择“新建C类”在弹出的菜单中选中“显示所有类”&#xff0c;选择Button作为…

Unity和iOS 原生专题二 Unity和iOS原生交互相互传值的两个方案

一 、方案一 通过指针传值和使用 MonoPInvokeCallback 从C#层向C层注册回调函数 1.1 iOS调用Unity函数Unity 给iOS传值 第一步C#端 定义 C#调用 ios 原生函数标识 固定写法 /// <summary>/// 定义 C#调用 ios 原生函数标识 固定写法/// </summary>private const …

Nginx高级配置与重写规则详解:从入门到实践

摘要: 本文将深入探讨Nginx的高级配置与重写规则,通过实际案例讲解如何优化Nginx的配置,实现URL重写、负载均衡、缓存优化等功能。文章旨在帮助读者更好地理解和应用Nginx,提升网站性能和用户体验。 一、Nginx简介 Nginx是一款高性能的HTTP和反向代理服务器,也是IMAP/POP…

pyqt QSplitter控件

pyqt QSplitter控件 QSplitter控件效果代码 QSplitter控件 PyQt中的QSplitter控件是一个强大的布局管理器&#xff0c;它允许用户通过拖动边界来动态调整子控件的大小。这个控件对于创建灵活的、用户可定制的用户界面非常有用。 QSplitter控件可以水平或垂直地分割其包含的子…