CEC2022:CEC2022测试函数及多种智能优化算法求解CEC2022对比

news/2024/12/31 15:05:15/

目录

一、CEC2022测试函数  

二、多种智能优化算法求解CEC2022

2.1  本文参与求解CEC2022的智能优化算法

 2.2 部分测试函数运行结果与收敛曲线

三、带标记收敛曲线代码(获得代码后可自行更改)

一、CEC2022测试函数  

        CEC2022测试集共有12个单目标测试函数,每个测试函数可选择的维度分别为10维、20维。该测试集合也是目前高质量论文应用最广泛的测试集,CEC2022测试集函数复杂,非常具有挑战力。

101c0aba55d646df8717383eba32ba96.png

CEC2022测试函数与理论最优值

eq?Search%20range%3A%5B-100%2C100%5D%5E%7BD%7D

二、多种智能优化算法求解CEC2022

2.1  本文参与求解CEC2022的智能优化算法

         本文选取一些经典的智能优化算法参与测试CEC2022测试函数,具体有:沙丘猫优化算法(SCSO)、蜣螂优化算法(DBO)、算术优化算法(AOA)、黏菌算法(SMA)、人工大猩猩部队优化算法(GTO)、蛇优化算法(SO)、非洲秃鹫优化算法(AVOA)以及灰狼算法(GWO)、鲸鱼算法(WOA)、引力搜索算法(GSA)。种群规模设为50、最大迭代次数为500。

d4b8526375e94bccbba8b81bcc680915.png

 2.2 部分测试函数运行结果与收敛曲线

F2:

The best optimal values of the objective funciton found by GSA is : 474.5299
The best optimal values of the objective funciton found by GWO is : 411.197
The best optimal values of the objective funciton found by WOA is : 416.4015
The best optimal values of the objective funciton found by AVOA is : 400.0163
The best optimal values of the objective funciton found by GTO is : 404.0752
The best optimal values of the objective funciton found by DBO is : 408.9161
The best optimal values of the objective funciton found by SO is : 407.3562
The best optimal values of the objective funciton found by SMA is : 407.083
The best optimal values of the objective funciton found by AOA is : 1154.5349
The best optimal values of the objective funciton found by SCSO is : 423.5253

86bcccfce47440c6aeeb691478fbe562.png

 F5:

The best optimal values of the objective funciton found by GSA is : 1006.2953
The best optimal values of the objective funciton found by GWO is : 900.1918
The best optimal values of the objective funciton found by WOA is : 3903.9517
The best optimal values of the objective funciton found by AVOA is : 953.213
The best optimal values of the objective funciton found by GTO is : 918.2926
The best optimal values of the objective funciton found by DBO is : 967.949
The best optimal values of the objective funciton found by SO is : 903.3099
The best optimal values of the objective funciton found by SMA is : 900.6152
The best optimal values of the objective funciton found by AOA is : 1378.7241
The best optimal values of the objective funciton found by SCSO is : 1437.0716

90189fb8f9b8464ea0624fbeece7d845.png

F8:

 The best optimal values of the objective funciton found by GSA is : 2253.7266
The best optimal values of the objective funciton found by GWO is : 2225.0024
The best optimal values of the objective funciton found by WOA is : 2231.3405
The best optimal values of the objective funciton found by AVOA is : 2225.3089
The best optimal values of the objective funciton found by GTO is : 2204.8334
The best optimal values of the objective funciton found by DBO is : 2224.6929
The best optimal values of the objective funciton found by SO is : 2222.9351
The best optimal values of the objective funciton found by SMA is : 2220.9324
The best optimal values of the objective funciton found by AOA is : 2445.8039
The best optimal values of the objective funciton found by SCSO is : 2216.7517

11da29868cff48f6a90a7117206a6f3e.png

F10:

The best optimal values of the objective funciton found by GSA is : 2636.9688
The best optimal values of the objective funciton found by GWO is : 2500.2949
The best optimal values of the objective funciton found by WOA is : 2500.6209
The best optimal values of the objective funciton found by AVOA is : 2500.4701
The best optimal values of the objective funciton found by GTO is : 2500.4813
The best optimal values of the objective funciton found by DBO is : 2500.5967
The best optimal values of the objective funciton found by SO is : 2500.351
The best optimal values of the objective funciton found by SMA is : 2500.5584
The best optimal values of the objective funciton found by AOA is : 2708.7742
The best optimal values of the objective funciton found by SCSO is : 2630.1491

964a2866ee9942188a64fcd88d852deb.png

F12:

The best optimal values of the objective funciton found by GSA is : 3026.5742
The best optimal values of the objective funciton found by GWO is : 2872.1718
The best optimal values of the objective funciton found by WOA is : 2911.8117
The best optimal values of the objective funciton found by AVOA is : 2865.403
The best optimal values of the objective funciton found by GTO is : 2863.4948
The best optimal values of the objective funciton found by DBO is : 2864.956
The best optimal values of the objective funciton found by SO is : 2865.3162
The best optimal values of the objective funciton found by SMA is : 2863.4012
The best optimal values of the objective funciton found by AOA is : 3035.8413
The best optimal values of the objective funciton found by SCSO is : 2868.6205 

3ef6305f85c94dc4acb4ac786dfa0efb.png

三、带标记收敛曲线代码(获得代码后可自行更改)

figure
maker_index=1:15:500;
semilogy(curve_compare(1,:),'k-*','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(2,:),'k-o','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(3,:),'b-<','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(4,:),'k-s','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(5,:),'k-d','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(6,:),'k-p','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(7,:),'r-p','MarkerIndices',maker_index,'LineWidth',1)
hold on
semilogy(curve_compare(8,:),'b-p','MarkerIndices',maker_index,'LineWidth',1)
xlabel('迭代次数');
ylabel('目标函数值');
grid on
box on

 需要代码请私信博主

e5c295a7f5b64fd09890fd99f89e1e7d.png


http://www.ppmy.cn/news/999305.html

相关文章

服务器硬件、部署LNMP动态网站、部署wordpress、配置web与数据库服务分离、配置额外的web服务器

day01 day01项目实战目标单机安装基于LNMP结构的WordPress网站基本环境准备配置nginx配置数据库服务部署wordpressweb与数据库服务分离准备数据库服务器迁移数据库配置额外的web服务器 项目实战目标 主机名IP地址client01192.168.88.10/24web1192.168.88.11/24web2192.168.88…

MySQL安装详细教程!!!

安装之前&#xff0c;先卸载你之前安装过的数据库程序&#xff0c;否则会造成端口号占用的情况。 1.首先下载MySQL:MySQL :: Download MySQL Community Server(下载路径) 2.下载版本不一样&#xff0c;安装方法略有不同&#xff1b;&#xff08;版本5的安装基本一致&#xff0c…

python——案例8:设定列表:listl=[0,1,2,3,4,5],求列表之和

案例8&#xff1a;设定列表&#xff1a;listl[0,1,2,3,4,5],求列表之和total0 list1[0,1,2,3,4,5] #列表lis1for ele in range(0,len(list1)):totaltotallist1[ele] print("列表中元素之和&#xff1a;",total) #输出结果

C++ __builtin_popcount函数作用

__builtin_popcount函数是系统自带的一个返回值是int/long/long long二进制1的个数的函数。 对于int&#xff0c;long&#xff0c; long long分别用一下三种函数&#xff1a; __builtin_popcount(unsigned int n)//返回值为int __builtin_popcountl(unsigned int n)//返回值为…

ESD实验方法

ESD要求&#xff1a;电路满足试验等级2.0KV&#xff0c; 电路引脚分类信息如下 电源&#xff1a; ①AVCC分组&#xff0c;包含引脚1和引脚2 ②VCC分组&#xff0c;包含引脚3和引脚4 地&#xff1a; ①AGND分组&#xff0c;包含引脚5和引脚6 ②GND分组&#xff0c;包含引…

python 在一个文件的同一个路径下创建一个和这个文件名字一样的目录文件夹, 输入文件路径 写一个函数

python 在一个文件的同一个路径下创建一个和这个文件名字一样的目录文件夹, 输入文件路径 写一个函数 文档&#xff1a;python 在一个文件的同一个路径下创建?.. 链接&#xff1a;http://note.youdao.com/noteshare?id11d6ddffd67aebf0a3e219c0cc57b098&sub7C73291164B9…

2023年第四届“华数杯”数学建模思路 - 案例:随机森林

## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林&#xff1f; 随机森林属于 集成学习 中的 Bagging&#xff08;Bootstrap AGgregation 的简称&#xff09; 方法。如果用图来表示他们之…

控件旋转90度,并跟随大小缩放

控件旋转角度&#xff0c;并跟随缩放改变大小 背景使用控件结果 背景 一个项目需求&#xff0c;需要旋转某个控件90使用&#xff0c;在网上找了很多资料&#xff0c;没有特别合适的&#xff0c;自己试水试了一天半&#xff0c;终于弄了个大概其&#xff0c;特此记录 使用控件…