前置知识:黎曼积分的概念
牛顿-莱布尼茨公式
设 f f f在 [ a , b ] [a,b] [a,b]上可积,令
F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)dt F(x)=∫axf(t)dt
则
(1) F F F在 [ a , b ] [a,b] [a,b]上连续
(2)若 f f f在点 x 0 ∈ [ a , b ] x_0\in[a,b] x0∈[a,b]处连续,则 F F F在 x 0 x_0 x0处可导,且 F ′ ( x 0 ) = f ( x 0 ) F'(x_0)=f(x_0) F′(x0)=f(x0)
(3)若 f f f在 [ a , b ] [a,b] [a,b]上连续,则 F F F是 f f f在 [ a , b ] [a,b] [a,b]上的一个原函数。如果 G G G是 f f f的任意一个原函数,则有
∫ a b f ( x ) d x = G ( b ) − G ( a ) \int_a^bf(x)dx=G(b)-G(a) ∫abf(x)dx=G(b)−G(a)
证明:
(1)因为 f f f在 [ a , b ] [a,b] [a,b]上可积,所以 f f f在 [ a , b ] [a,b] [a,b]上有界。令 M M M为 ∣ f ( x ) ∣ |f(x)| ∣f(x)∣的最大值,任取 x 0 ∈ [ a , b ] x_0\in[a,b] x0∈[a,b],当 x ∈ [ a , b ] x\in[a,b] x∈[a,b]时,有
∣ F ( x ) − F ( x 0 ) ∣ = ∣ ∫ a x f ( t ) d t − ∫ a x 0 f ( t ) d t ∣ |F(x)-F(x_0)|=|\int_a^xf(t)dt-\int_a^{x_0}f(t)dt| ∣F(x)−F(x0)∣=∣∫axf(t)dt−∫ax0f(t)dt∣
= ∣ ∫ x 0 x f ( t ) d t ∣ ≤ M ∣ ∫ x 0 x d x ∣ = M ∣ x − x 0 ∣ =|\int_{x_0}^xf(t)dt|\leq M|\int_{x_0}^xdx|=M|x-x_0| =∣∫x0xf(t)dt∣≤M∣∫x0xdx∣=M∣x−x0∣
\qquad 由连续函数的定义,当 x → x 0 x\to x_0 x→x0时, ∣ x − x 0 ∣ → 0 |x-x_0|\to 0 ∣x−x0∣→0, M ∣ x − x 0 ∣ → 0 M|x-x_0|\to 0 M∣x−x0∣→0,所以 F F F在点 x 0 x_0 x0处连续
\qquad 因为 x 0 x_0 x0可以取 [ a , b ] [a,b] [a,b]上的任何值,所以 F F F在 [ a , b ] [a,b] [a,b]上连续
(2)依题意, x 0 x_0 x0是 f f f的连续点,则 ∀ ε > 0 , ∃ δ > 0 \forall\varepsilon>0,\exist\delta>0 ∀ε>0,∃δ>0,当 t ∈ [ a , b ] t\in[a,b] t∈[a,b]且 ∣ t − x 0 ∣ < δ |t-x_0|<\delta ∣t−x0∣<δ时,都有
∣ f ( t ) − f ( x 0 ) ∣ < ε |f(t)-f(x_0)|<\varepsilon ∣f(t)−f(x0)∣<ε
\qquad 于是,当 x ∈ [ a , b ] x\in[a,b] x∈[a,b]且 ∣ x − x 0 ∣ < δ |x-x_0|<\delta ∣x−x0∣<δ时,
∣ F ( x ) − F ( x 0 ) x − x 0 − f ( x 0 ) ∣ = ∣ 1 x − x 0 ∫ x 0 x [ f ( t ) − f ( x 0 ) ] d t ∣ < ∣ 1 x − x 0 ∫ x 0 x ε d t ∣ = ε |\dfrac{F(x)-F(x_0)}{x-x_0}-f(x_0)|=|\dfrac{1}{x-x_0}\int_{x_0}^x[f(t)-f(x_0)]dt|<|\dfrac{1}{x-x_0}\int_{x_0}^x\varepsilon dt|=\varepsilon ∣x−x0F(x)−F(x0)−f(x0)∣=∣x−x01∫x0x[f(t)−f(x0)]dt∣<∣x−x01∫x0xεdt∣=ε
\qquad 由此可得
F ′ ( x 0 ) = F ( x ) − F ( x 0 ) x − x 0 = f ( x 0 ) F'(x_0)=\dfrac{F(x)-F(x_0)}{x-x_0}=f(x_0) F′(x0)=x−x0F(x)−F(x0)=f(x0)
(3)因为 f f f在 [ a , b ] [a,b] [a,b]上连续,由 ( 2 ) (2) (2)得 F ( x ) F(x) F(x)是 f f f在 [ a , b ] [a,b] [a,b]上的一个原函数。
\qquad 设 G G G为 f f fD 的任意一个原函数,则
[ G ( x ) − F ( x ) ] ′ = G ′ ( x ) − F ′ ( x ) = f ( x ) − f ( x ) = 0 [G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0 [G(x)−F(x)]′=G′(x)−F′(x)=f(x)−f(x)=0
\qquad 所以 G ( x ) − F ( x ) = C G(x)-F(x)=C G(x)−F(x)=C,由此可得 ∀ x ∈ [ a , b ] \forall x\in[a,b] ∀x∈[a,b],有
∫ a x f ( t ) d t = F ( x ) = F ( x ) − F ( a ) = G ( x ) − G ( a ) \int_a^xf(t)dt=F(x)=F(x)-F(a)=G(x)-G(a) ∫axf(t)dt=F(x)=F(x)−F(a)=G(x)−G(a)
\qquad 特别地,有
∫ a b f ( t ) d t = G ( b ) − G ( a ) \int_a^bf(t)dt=G(b)-G(a) ∫abf(t)dt=G(b)−G(a)
\qquad 这个式子就是牛顿-莱布尼茨公式,这是一种用被积函数的原函数来求定积分的方法。
例题
设 f f f在 [ a , b ] [a,b] [a,b]上连续, u ( x ) u(x) u(x)和 v ( x ) v(x) v(x)在 [ a , b ] [a,b] [a,b]上可导,且 u ( x ) u(x) u(x)和 v ( x ) v(x) v(x)的值域包含于 [ a , b ] [a,b] [a,b],求下列函数的导数:
G ( x ) = ∫ v ( x ) u ( x ) f ( t ) d t G(x)=\int_{v(x)}^{u(x)}f(t)dt G(x)=∫v(x)u(x)f(t)dt
解:
\qquad 令 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_a^xf(t)dt F(x)=∫axf(t)dt,则 F ′ ( u ) = f ( u ) F'(u)=f(u) F′(u)=f(u),所以
G ( x ) = ∫ a u ( x ) f ( t ) d t − ∫ a v ( x ) f ( t ) d t = F ( u ( x ) ) − F ( v ( x ) ) G(x)=\int_a^{u(x)}f(t)dt-\int_a^{v(x)}f(t)dt=F(u(x))-F(v(x)) G(x)=∫au(x)f(t)dt−∫av(x)f(t)dt=F(u(x))−F(v(x))
\qquad 那么
G ′ ( x ) = F ′ ( u ( x ) ) u ′ ( x ) − F ′ ( v ( x ) ) v ′ ( x ) = f ( u ( x ) ) u ′ ( x ) − f ( v ( x ) ) v ′ ( x ) G'(x)=F'(u(x))u'(x)-F'(v(x))v'(x)=f(u(x))u'(x)-f(v(x))v'(x) G′(x)=F′(u(x))u′(x)−F′(v(x))v′(x)=f(u(x))u′(x)−f(v(x))v′(x)