day15 - 使用图像金字塔进行图像拼接

news/2025/2/22 4:22:15/

在我们之前的学习过程中,使用的都是恒定大小的图像,但是在某些情况下,我们需要使用不同分辨率的(相同)图像。例如,当在图像中搜索某些东西(例如人脸)时,我们不确定对象将以多大的尺寸显示在图像中。在这种情况下,我们将需要创建一组具有不同分辨率的相同图像,并在所有图像中搜索对象,这些具有不同分辨率的图像集称为“图像金字塔”。

本期我们来实现使用图像金字塔将两张图片融合到一张图片。

完成本期内容,你可以:

  • 了解图像金字塔的原理和应用

  • 掌握上采样和下采样对应的原理和函数

  • 掌握高斯金字塔的实现和应用

  • 掌握拉普拉斯金字塔的实现和应用

若要运行案例代码,你需要有:

  • 操作系统:Ubuntu 16 以上 或者 Windows10

  • 工具软件:VScode 或者其他源码编辑器

  • 硬件环境:无特殊要求

  • 核心库:python 3.6.13, opencv-contrib-python 3.4.11.39,opencv-python 3.4.2.16

点击下载源码


下采样

OpenCV将下采样封装成了cv2.pyrDown()方法。

函数原型:dst = cv2.pyrDown( src[, dstsize[, borderType]] )
dst为输出图像。

参数描述如下:

  • dst:目标图像。
  • src: 原始图像。
  • dstsize:目标图像的大小。
  • borderType:边界类型。

上采样

OpenCV将下采样封装成了cv2.pyrDown()方法。

函数原型:dst = cv2.pyrDown( src[, dstsize[, borderType]] )
dst为输出图像。

参数描述如下:

  • dst:目标图像。
  • src: 原始图像。
  • dstsize:目标图像的大小。
  • borderType:边界类型。

高斯金字塔

高斯金字塔是由底部的最大分辨率图像逐次向下采样得到的一系列图像。最下面的图像分辨率最高,越往上图像分辨率越低。高斯金字塔的向下采样过程是:对于给定的图像先做一次高斯平滑处理,也就是使用一个大小为的卷积核对图像进行卷积操作,然后再对图像采样,去除图像中的偶数行和偶数列,然后就得到一张图片,对这张图片再进行上述操作就可以得到高斯金字塔。

请添加图片描述

拉普拉斯金字塔

拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。拉普拉金字塔的图像看起来就像边界图,其中很多像素都是0。他们经常被用在图像压缩中。将降采样之后的图像再进行上采样操作,然后与之前还没降采样的原图进行做差得到残差图。为还原图像做信息的准备。

请添加图片描述

图像融合

图像金字塔的重要应用就是图像融合,它的具体操作是首先对两张图片分别进行降采样,或者采用高斯金字塔法,当降采样到一定程度后,将两张图片合并,这时候由于在降采样时丢失了一部分边缘信息,因此边缘处不匹配的现象就消失了。之后对合并的图像进行上采样,或者采用拉普拉斯金字塔法,使图像回到原来的大小。此时,边缘处的不匹配现象就会明显降低甚至消失。


具体步骤

使用图像金字塔将下列两张图片进行融合。

请添加图片描述
请添加图片描述

步骤一:创建项目工具

创建项目名为使用图像金字塔进行图像融合,项目根目录下新建code文件夹储存代码,新建dataset文件夹储存数据,项目结构如下:

使用图像金字塔进行图像融合                  # 项目名称
├── code                               # 储存代码文件
├── dataset                            # 储存数据文件

注:如项目结构已存在,无需再创建。

步骤二:加载苹果和橙子的两个图像

  1. 导入所需模块:OpenCV、NumPy ;
  2. 读取dataset文件夹下的apple.pngorange.png图片;
  3. 将两张图像均修改为 515*512 的尺寸;

代码实现

# 导入OpenCV、numpy
import cv2
import numpy as np# 读取图片
img = cv2.imread("../dataset/apple.png")
img1 = cv2.imread("../dataset/orange.png")# resize到2的幂次,方便降采样处理
img = cv2.resize(img, (512, 512))
img1 = cv2.resize(img1, (512, 512))

步骤三:定义构建高斯金字塔的函数

  1. 将原图像复制,作为第一张图像;
  2. 高斯平滑处理;
  3. 下采样操作;
  4. 循环上面两步操作,并将得到的图像储存至列表中。

代码实现

# 定义构建高斯金字塔的函数
def gaussian(ori_image, down_times=2):# 1:添加第一个图像为原始图像temp_gau = ori_image.copy()gaussian_pyramid = [temp_gau]for i in range(down_times):# 高斯平滑gaussian_img = cv2.GaussianBlur(temp_gau, (5, 5), 0, 0)# 2:连续存储2次下采样,这样高斯金字塔就有3层temp_gau = cv2.pyrDown(gaussian_img)gaussian_pyramid.append(temp_gau)return gaussian_pyramid

步骤四:定义构建拉普拉斯金字塔的函数

  1. 将高斯金字塔图像列表中的最后一张图像作为第一张图像;
  2. 上采样操作
  3. 与之前还没降采样的原图进行做差得到残差图;
  4. 循环上面两步操作,并将得到的图像储存至列表中。

代码实现

# 定义构建拉普拉斯金字塔的函数
def laplacian(gaussian_pyramid, up_times=2):laplacian_pyramid = [gaussian_pyramid[-1]]for i in range(up_times,0, -1):# i的取值为2,1,0也就是拉普拉斯金字塔有3层temp_pyrUp = cv2.pyrUp(gaussian_pyramid[i])temp_lap = cv2.subtract(gaussian_pyramid[i-1], temp_pyrUp)laplacian_pyramid.append(temp_lap)return laplacian_pyramid

步骤五:对两张图像分别进行高斯金字塔和拉普拉斯金字塔操作

代码实现

# 第一张图进行高斯金字塔计算
gp1 = gaussian(img, down_times=5)# 第二张图进行高斯金字塔计算
gp2 = gaussian(img1,down_times=5)# 第一张图进行拉普拉斯金字塔计算
lp1 = laplacian(gp1,up_times=5)# # 第二张图进行拉普拉斯金字塔计算
lp2 = laplacian(gp2,up_times=5)

步骤六:图像融合

  1. 在每个级别中添加第一张图像的左边和第二张图像的右边,组成新的图像;
  2. 重建图像;
  3. 展示图像。
# 现在在每个级别中添加左右两半图像
merges = []
for i in range(step + 1):w, h, d = lp1[i].shapemerge = np.hstack((lp1[i][:, 0:w // 2 - 10 // 2 ** i], lp2[i][:, w // 2 - 10 // 2 ** i:]))merges.append(merge)
# 现在重建
ls_ = merges[0]
for i in range(1,6):ls_ = cv2.pyrUp(ls_)ls_ = cv2.add(ls_, merges[i])cv2.imshow('Pyramid_blending2.jpg',ls_)cv2.waitKey()
cv2.destroyAllWindows()

图像金字塔是图像中多尺度表达的一种,最主要用于图像的分割,是一种以多分辨率来解释图像的有效但概念简单的结构。图像金字塔最初用于机器视觉和图像压缩,一幅图像的金字塔是一系列以金字塔形状排列的分辨率逐步降低,且来源于同一张原始图的图像集合。其通过梯次向下采样获得,直到达到某个终止条件才停止采样。金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似。我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低。

点击下载源码


http://www.ppmy.cn/news/83962.html

相关文章

C Primer Plus第五章编程练习答案

学完C语言之后,我就去阅读《C Primer Plus》这本经典的C语言书籍,对每一章的编程练习题都做了相关的解答,仅仅代表着我个人的解答思路,如有错误,请各位大佬帮忙点出! 1.编写一个程序,把用分钟表…

vue3 ref 、unref 、toRef、toRefs

ref接受一个内部值并返回一个响应式且可变的 ref 对象。ref 对象仅有一个 .value属性,指向该内部值。 示例 const count ref(0) console.log(count.value) // 0 如果将对象分配为 ref 值,则它将被 reactive 函数处理为深层的响应式对象 unref 如果…

第四章 程序的控制结构

文章目录 第四章 程序的控制结构4.1 程序的三种控制结构4.1.1 程序流程图4.1.2 程序控制结构基础4.1.3 程序控制结构扩展 4.2 程序的多分支结构4.2.1 单分支结构:if4.2.2 二分支结构:if-else4.2.3 多分支结构:if-elif-else4.2.4 判断条件及组…

Go语言核心编程-函数、包和错误处理

第 6 章 函数、包和错误处理 6.1 为什么需要函数 6.1.1请大家完成这样一个需求: 输入两个数,再输入一个运算符(,-,*,/),得到结果.。 6.1.2使用传统的方法解决 走代码 分析一下上面代码问题 上面的写法是可以完成功能, 但是代码冗余同时不利于代码维护函数可以解…

景区上线智慧客流人数采集分析系统的根本原因

智慧客流量采集系统是一种高效、智能的客流量采集解决方案,可以实现客流量的实时监控、数据分析和预测,提高服务质量、降低管理成本、提高安全性等优势。该系统适用于各种场所,如景区、商场、服务区、机场等。 AI客流视觉监控 一、智慧客流量…

【HMS Core】【ML Kit】活体检测FAQ合集

【问题描述1】 使用示例代码集成活体检测SDK时,报错state code -7001 【解决方案】 使用示例代码前请详细阅读示例工程中的“README”文件。您需要完成以下操作后才可以运行示例代码。 在AppGallery Connect网站下载自己应用的“agconnect-services.json”文件&a…

可持续能源技术真的能改变世界么?

随着全球气候变化日趋严重,能源转型成为解决气候问题和提高全球能源安全合理性的必要措施之一。可持续能源技术因其对环境的友好性和可再生性而成为了当前热点话题。你认为可持续能源技术真的能改变世界吗?一起来说说你的看法吧! 一、你在工…

WinUI3-自定义应用背景

原文链接 https://white-night.club/index.php/2023/05/22/appdev5/ 2023年5月22日 将应用背景设置为自定义的图片 前言 图片和应用界面色调的选择 这一块仁者见仁,智者见智。但最好从用户交互的角度去仔细思考颜色的搭配。设想一下,你的用户打开你的应…