电压增益特性分析
根据搭建的 LLC 谐振变换器主电路等效模型,可推导出变换器直流电压
增益为 M:
λ =4时的增益曲线如下图所示:
根据变换器直流电压增益表达式,利用 Mathematica 绘制出λ=4 时,变换器取不同 Q 值的直流增益曲线,如上图所示。图中每条增益曲线都呈先增后减的趋势,每条曲线都有一个拐点,在此处增益最大。纯阻性曲线是上图中的红色曲线,它和 fn=1(图中黄色直线)把 LLC 谐振变换器工作区域一分为二:其左边区域为ZCS 区域,谐振网络呈容性;其右为 ZVS 区域,谐振网络呈感性。
LLC 谐振变换器直流增益曲线中还存在一个特殊点(1,1),即 fn=1 时,因为 Lr、Cr工作在谐振频率点,谐振网络的阻抗可以等效为零,输入电压相当于直接作为变压器原边激励电压,变换器直流增益恒为 1,不受负载大小影响。根据LLC谐振变换器工作原理分析可知,谐振频率点还是决定副边整流二极管能否实现 ZCS关断的分界点。
综上所述,将横坐标 fn=1 的直线和纯阻性曲线作为分界线,我们将图 2-21 分为 3 个工作区域:
(1)区域 1:横坐标 fn=1 的直线右侧区域。在此工作区域内,LLC 谐振变换器工作特性与串联谐振变换器相似,谐振网络呈感性,直流电压增益 M 恒小于 1,变换器工作在降压状态。在这个工作区域中,开关网络能够实现 ZVS。整流二极管电流连续,工作在硬开关状态,无法实现 ZCS 关断,存在反向恢复问题。
(2)区域 2:纯阻性曲线右侧及横坐标 fn=1 的直线左侧区域。谐振网络呈感性,变换器工作在升压状态,M>1。在此工作区域内,变换器能够同时实现开关 MOSFET的 ZVS 开通和整流二极管的 ZCS 关断。
(3)区域 3:纯阻型曲线左侧及坐标 fn=1 的直线左侧区域。谐振网络呈容性。在此工作区域中,变换器开关网络无法实现 ZVS,整流二极管能够实现 ZCS 关断。根据以上分析,在工作区域 1 时,输出电流连续,整流二极管工作在硬开关状态,无法实现 ZCS 关断,存在反向恢复问题。而在工作区域 3,又不是 ZVS 工作区,无法实现 ZVS。所以,在设计 LLC 谐振变换器时,为了保证其高效性,应使其工作在区域 2 中。
λ对变换器工作特性的影响
在上文中,通过变换器电压增益与频率的关系式得出 LLC 谐振变换器的电压增益曲线,对变换器在不同工作区间的电压增益特性进行了直观分析。以此为基础,在本节中针对λ对变换器工作特性的影响进行深入研究,并确定电感比λ的取值范围。
电感比λ为 Lm和 Lr的比值,是 LLC 谐振变换器设计中的关键参数,它的选取会影响变换器的工作特性和效率,也是其他谐振元件参数设计的基础。
利用 Mathematica 画出不同值λ时的变换器直流增益曲线,如图 2-22 所示。通过观察易知在 fn =1 处,即变换器工作在谐振频率点时,谐振网络的阻抗等效为零,输入电压相当于直接作为变压器原边激励,电压直流增益恒为 1,不受输出负载变换的影响。
当变换器电感比λ不同时,增益曲线最大增益值随着λ 增大而减小,并且拐点所对应的开关频率也随着λ的增大远离串联谐振频率 fr。λ越大,LLC 谐振变换器获得相同增益时的频率变换范围越宽:如上图中标注所示,λ取值不同时,Q=0.3的增益曲线增益由 1.2 降为 1.1 时,工作频率变化范围不同。λ 越大,获得相同增益变化时频率变化范围越宽。如果λ取值过大,不仅最大增益过小无法满足输出要求,而且会使谐振变换器的工作频率范围过大,对提高谐振变换器效率不利。
综上所述,λ不能取过大。从另一个角度来看,λ取很小时,虽然能够满足输出对直流增益的要求,但由λ的定义可知相对应的励磁电感 Lm 很小,通过励磁电感支路的电流很大,引起很大的损耗从而降低变压器效率,如上图所示。并且λ过小时,变换器工作频率过窄,当变换器工作频率微调时,会造成直流增益的陡升或陡降。通过以上分析,λ取过大或过小均不利于变换器工作。