YOLO V7源码解析

news/2024/12/11 20:34:25/

1.命令行参数介绍

YOLO v7参数与YOLO v5差不多,我就直接将YOLO v5命令行参数搬过来了,偷个懒 

--weights:初始权重--cfg:模型配置文件--data:数据配置文件--hyp:学习率等超参数文件--epochs:迭代次数-imgsz:图像大小--rect:长方形训练策略,不resize成正方形,使用灰条进行图片填充,防止图片失真--resume:恢复最近的培训,从last.pt开始--nosave:只保存最后的检查点--noval:仅在最后一次epochs进行验证--noautoanchor:禁用AutoAnchor--noplots:不保存打印文件--evolve:为x个epochs进化超参数--bucket:上传操作,这个参数是 yolov5 作者将一些东西放在谷歌云盘,可以进行下载--cache:在ram或硬盘中缓存数据--image-weights:测试过程中,图像的那些测试地方不太好,对这些不太好的地方加权重--single-cls:单类别标签置0 --device:gpu设置  --multi-scale:改变img大小+/-50%,能够被32整除--optimizer:学习率优化器--sync-bn:使用SyncBatchNorm,仅在DDP模式中支持,跨gpu时使用--workers:最大 dataloader 的线程数 (per RANK in DDP mode)--project:保存文件的地址--name:保存日志文件的名称--exist-ok:对项目名字是否进行覆盖--quad:在dataloader时采用什么样的方式读取我们的数据,1280的大图像可以指定--cos-lr:余弦学习率调度--label-smoothing:--patience:经过多少个epoch损失不再下降,就停止迭代--freeze:迁移学习,冻结训练--save-period:每x个周期保存一个检查点(如果<1,则禁用)--seed:随机种子--local_rank:gpu编号--entity:可视化访问信息--quad:四元数据加载器是我们认为的一个实验性功能,它可能允许在较低 --img 尺寸下进行更高 --img 尺寸训练的一些好处。此四元整理功能会将批次从 16x3x640x640 重塑为 4x3x1280x1280,这不会产生太大影响 本身,因为它只是重新排列批次中的马赛克,但有趣的是允许批次中的某些图像放大 2 倍(每个四边形中的 4 个马赛克中的一个放大 2 倍,其他 3 个马赛克被删除)

2.训练策略 

ema:移动平均法,在更新参数的时候我们希望更平稳一些,考虑的步骤更多一些。公式为:v_{t}=\beta v_{t-1}+(1-\beta)v_{t-1},当系数为\beta时,相当于考虑1/(1-\beta )步更新的梯度,YOLO v7默认\beta

为0.999,相当于考虑1000步更新的梯度

3.网络结构

E-ELAN:

 如下图所示,配置文件的部分就是E-ELAN模块,有四条路径,分别经过1个卷积、1个卷积、3个卷积和5个卷积,其中有3条路径共享了特征图。最后,对四条路径的特征图进行拼接。经过E-ELAN后,相较于输入,特征图通道数加倍。        

  

 

 MPCONV:

        对于MPconv,也分为两条路径,一条经过Maxpooling层,另一条路径经过卷积进行下采样,可以理解为综合考虑卷积和池化的下采样结果,以提升性能。最后,对特征图进行拼接。

SPPCSPC:

        YOLO v7还是采用了SPP的思想,首先对特征图经过3次卷积,然后分别经过5*5,9*9,13*13的池化,需要注意的是,将5*5与9*9最大池化的特征图进行ADD操作,与13*13和原特征图进行拼接,经过不同kenel_size的池化,实现了对不同感受野的特征融合。然后再经过2次卷积,与经过一次卷积的特征图进行拼接。

代码如下: 

class SPPCSPC(nn.Module):# CSP https://github.com/WongKinYiu/CrossStagePartialNetworksdef __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):super(SPPCSPC, self).__init__()c_ = int(2 * c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(c_, c_, 3, 1)self.cv4 = Conv(c_, c_, 1, 1)self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])self.cv5 = Conv(4 * c_, c_, 1, 1)self.cv6 = Conv(c_, c_, 3, 1)self.cv7 = Conv(2 * c_, c2, 1, 1)def forward(self, x):x1 = self.cv4(self.cv3(self.cv1(x)))y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))y2 = self.cv2(x)return self.cv7(torch.cat((y1, y2), dim=1))

PAN:

         yolo v7还是采用了YOLO v5的PAN,经过SPPCSPC层后的特征图不断进行上采样,并与低层信息进行融合,实现了低层信息和高层信息的特征融合,然后进行下采样,与低层进行特征融合,实现了高层信息与低层信息的特征融合。

HEAD:

        head部分首先经过一层repconv,由3条路径组成,1层1*1的卷积、1层3*3的卷积和1层BN层。 经过repconv后,经过输出层输出结果

代码如下:

class RepConv(nn.Module):# Represented convolution# https://arxiv.org/abs/2101.03697def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True, deploy=False):super(RepConv, self).__init__()self.deploy = deployself.groups = gself.in_channels = c1self.out_channels = c2assert k == 3assert autopad(k, p) == 1padding_11 = autopad(k, p) - k // 2self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())if deploy:self.rbr_reparam = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=True)else:self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)self.rbr_dense = nn.Sequential(nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False),nn.BatchNorm2d(num_features=c2),)self.rbr_1x1 = nn.Sequential(nn.Conv2d( c1, c2, 1, s, padding_11, groups=g, bias=False),nn.BatchNorm2d(num_features=c2),)def forward(self, inputs):if hasattr(self, "rbr_reparam"):return self.act(self.rbr_reparam(inputs))if self.rbr_identity is None:id_out = 0else:id_out = self.rbr_identity(inputs)return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)def get_equivalent_kernel_bias(self):kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)return (kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,bias3x3 + bias1x1 + biasid,)def _pad_1x1_to_3x3_tensor(self, kernel1x1):if kernel1x1 is None:return 0else:return nn.functional.pad(kernel1x1, [1, 1, 1, 1])def _fuse_bn_tensor(self, branch):if branch is None:return 0, 0if isinstance(branch, nn.Sequential):kernel = branch[0].weightrunning_mean = branch[1].running_meanrunning_var = branch[1].running_vargamma = branch[1].weightbeta = branch[1].biaseps = branch[1].epselse:assert isinstance(branch, nn.BatchNorm2d)if not hasattr(self, "id_tensor"):input_dim = self.in_channels // self.groupskernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)for i in range(self.in_channels):kernel_value[i, i % input_dim, 1, 1] = 1self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)kernel = self.id_tensorrunning_mean = branch.running_meanrunning_var = branch.running_vargamma = branch.weightbeta = branch.biaseps = branch.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta - running_mean * gamma / stddef repvgg_convert(self):kernel, bias = self.get_equivalent_kernel_bias()return (kernel.detach().cpu().numpy(),bias.detach().cpu().numpy(),)def fuse_conv_bn(self, conv, bn):std = (bn.running_var + bn.eps).sqrt()bias = bn.bias - bn.running_mean * bn.weight / stdt = (bn.weight / std).reshape(-1, 1, 1, 1)weights = conv.weight * tbn = nn.Identity()conv = nn.Conv2d(in_channels = conv.in_channels,out_channels = conv.out_channels,kernel_size = conv.kernel_size,stride=conv.stride,padding = conv.padding,dilation = conv.dilation,groups = conv.groups,bias = True,padding_mode = conv.padding_mode)conv.weight = torch.nn.Parameter(weights)conv.bias = torch.nn.Parameter(bias)return convdef fuse_repvgg_block(self):    if self.deploy:returnprint(f"RepConv.fuse_repvgg_block")self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])rbr_1x1_bias = self.rbr_1x1.biasweight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])# Fuse self.rbr_identityif (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):# print(f"fuse: rbr_identity == BatchNorm2d or SyncBatchNorm")identity_conv_1x1 = nn.Conv2d(in_channels=self.in_channels,out_channels=self.out_channels,kernel_size=1,stride=1,padding=0,groups=self.groups, bias=False)identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()# print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")identity_conv_1x1.weight.data.fill_(0.0)identity_conv_1x1.weight.data.fill_diagonal_(1.0)identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)# print(f" identity_conv_1x1.weight = {identity_conv_1x1.weight.shape}")identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)bias_identity_expanded = identity_conv_1x1.biasweight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])            else:# print(f"fuse: rbr_identity != BatchNorm2d, rbr_identity = {self.rbr_identity}")bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )            #print(f"self.rbr_1x1.weight = {self.rbr_1x1.weight.shape}, ")#print(f"weight_1x1_expanded = {weight_1x1_expanded.shape}, ")#print(f"self.rbr_dense.weight = {self.rbr_dense.weight.shape}, ")self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)self.rbr_reparam = self.rbr_denseself.deploy = Trueif self.rbr_identity is not None:del self.rbr_identityself.rbr_identity = Noneif self.rbr_1x1 is not None:del self.rbr_1x1self.rbr_1x1 = Noneif self.rbr_dense is not None:del self.rbr_denseself.rbr_dense = None

输出层: 

        对于输出层,YOLO v7采用了yoloR的思想,首先对于经过repconv的特征图,经过ImplicitA层,我个人的理解是,ImplicitA相当于就是各个通道一个偏置项,以丰富各个通道所提取的信息,同时这个偏置项是可以学习的。经过ImplicitA后的特征馈送到输出层中,将输出的结果ImplicitM层,ImplicitM层我的理解是他对输出结果进行了放缩,能够更好的进行回归框的预测。

class ImplicitA(nn.Module):def __init__(self, channel, mean=0., std=.02):super(ImplicitA, self).__init__()self.channel = channelself.mean = meanself.std = stdself.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))nn.init.normal_(self.implicit, mean=self.mean, std=self.std)def forward(self, x):return self.implicit + xclass ImplicitM(nn.Module):def __init__(self, channel, mean=1., std=.02):super(ImplicitM, self).__init__()self.channel = channelself.mean = meanself.std = stdself.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))nn.init.normal_(self.implicit, mean=self.mean, std=self.std)def forward(self, x):return self.implicit * x

 4.损失函数

        损失函数的输入有3个部分,第一个是预测值,第二个是标签,第三个是图像img

        预测值即为上面模型的输出,而对于标签target, 维度为物体数量*6,对于第二个维度,第一列为标签的索引,第二列为物体所属类别,而后面四列为物体检测框。

候选框的偏移

        首先,对target进行变换,让target包含anchor的索引,此时target维度为

 number of anchors,number of targets,7,最后一个维度7的组成为:batch索引,类别,x,y,w,h,anchor索引。

        对于偏移,偏移的思想是应对正负样本不均衡的问题,通常来说,负样本远远多于正样本。因此,通过偏移,可以构建更多的正样本。对于样本的中心点,只要目标的中心点偏移后位于附近的网格,也认为这个目标属于这个网格,对应的锚框的区域为正样本

        具体过程为:

  •  输入target标签为相对坐标,将x,y,w,h映射到特征图上
  • 计算锚框与真实框的宽高比,筛选出宽高比在1/r~r(默认为4),其他相差太大的锚框全部,去除,这样可以保证回归结果
  • 分别以左上角为原点和右下角为原点得到中心点的坐标
  • 对于每一个网格,选出中心点离网格中心点左、上小于0.5的target,并且不能是边界,例如:当中心点距离网格左边的距离小于0.5时,中心点左移0.5,此时,该网格左边的网格对应的锚框也为正样本。

通过,偏移,增加了正样本的数量,返回整数作为中心点所在网格的索引,最终得到存储batch_indices, anchor_indices, grid indices的索引矩阵和对应的anchors

代码如下: 

 def find_3_positive(self, p, targets):# Build targets for compute_loss(), input targets(image,class,x,y,w,h)na, nt = self.na, targets.shape[0]  # number of anchors, targetsindices, anch = [], []gain = torch.ones(7, device=targets.device).long()  # normalized to gridspace gain#---------------------------------------------------------------------------------## number of anchors,number of targets# 表示哪个target属于哪个anchor#---------------------------------------------------------------------------------#ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)# ---------------------------------------------------------------------------------## number of anchors,number of targets,7# 最后一个维度7的组成为:batch索引,类别,x,y,w,h,anchor索引# ---------------------------------------------------------------------------------#targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices# ---------------------------------------------------------------------------------## 对于样本的中心点,只要目标的中心点偏移后位于附近的网格,也认为这个目标属于这个网格,对应的锚框的区域为正样本# ---------------------------------------------------------------------------------#g = 0.5  # biasoff = torch.tensor([[0, 0],[1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m# [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm], device=targets.device).float() * g  # offsetsfor i in range(self.nl):anchors = self.anchors[i]# 特征图的h,wgain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain# Match targets to anchors# target标签为相对坐标,将x,y,w,h映射到特征图上t = targets * gainif nt:# Matches# 计算锚框与真实框的宽高比,筛选出宽高比在1/r~r(默认为4),其他相差太大的锚框全部# 去除,这样可以保证回归结果r = t[:, :, 4:6] / anchors[:, None]  # wh ratioj = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t']  # compare# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))t = t[j]  # filter 去除相差太大的锚框# Offsets 偏移操作# 到左上角的距离,相当于就是以左上角为原点gxy = t[:, 2:4]  # grid xy# 到右下角的距离,相当于就是以右下角为原点gxi = gain[[2, 3]] - gxy  # inverse# 对于每一个网格,选出中心点离网格中心点左上角小于0.5的target,并且不能是边界# 例如:有两个真实框,需要判断,第一个物体是否满足要求,第二个物体是否满足要求,# 将所得的的矩阵转置,j代表在H维度是否满足要求,k代表在w维度是否满足要求j, k = ((gxy % 1. < g) & (gxy > 1.)).T# 对于每一个网格,选出中心点离网格中心点右下角小于0.5的target,并且不能是边界l, m = ((gxi % 1. < g) & (gxi > 1.)).T# 对应于上面的五个偏移j = torch.stack((torch.ones_like(j), j, k, l, m))# target重复五次对应于五个偏移,然后判断能否进行偏移,比如,到网格左边的距离小于0.5,就向左进行偏移,# 需要注意的是,上面给的+1,但是下面操作是减,因此到网格左边的距离小于0.5,就向左进行偏移t = t.repeat((5, 1, 1))[j]offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]else:t = targets[0]offsets = 0# Define batch_indice,classb, c = t[:, :2].long().T  # image, classgxy = t[:, 2:4]  # grid xygwh = t[:, 4:6]  # grid wh# 执行偏移操作gij = (gxy - offsets).long()gi, gj = gij.T  # grid xy indices# Appenda = t[:, 6].long()  # anchor indicesindices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indicesanch.append(anchors[a])  # anchorsreturn indices, anch

候选框的筛选分析:

        yolo v7的候选框的筛选跟YOLO v5和YOLO X均不相同,对于上面候选框的偏移,我们最终得到了9个锚框,然后分别计算这9个锚框的类别损失和IOU损失之和。

        具体过程为: 首先对候选框进行初筛,取出初筛的索引及对应的预测结果,计算出对应的x,y和w,h。需要注意的是,计算过程与初赛过程相对应。对于x,y的计算,若x,y分别为相对于网格的距离,范围为0~1,经过偏移后,x,y的取值范围为-0.5~1.5。对w和h也进行限制,初筛的时候,我们将宽高比大于4的都去掉了,因此,预测的范围也为0-4。然后计算预测框和真实框的iou,取出iou损失中最小的topk,如果多于10个候选框,取10个,少于10个候选框,全部取。然后 对topk的iou进行累加操作,最后取[iou之和]个候选框,相当于iou很小的候选框统统不要,最小为1个,其目的去除iou很小的候选框。并计算出iou损失,和分类损失进行加权,根据加权的结果筛选出对应的候选框。如果出现多个真实框匹配到了同一候选框的情况,此时对应的anchor_matching_gt > 1。比较哪一个真实框跟这个候选框的损失最小,损失最小的真实框匹配上该候选框,其他地方置为0。最后对信息进行汇总,返回batch索引,anchor索引,网格索引,对应的真实标签信息和锚框,并按照输出层进行统计。

 代码如下:

 def build_targets(self, p, targets, imgs):#indices, anch = self.find_positive(p, targets)indices, anch = self.find_3_positive(p, targets)#indices, anch = self.find_4_positive(p, targets)#indices, anch = self.find_5_positive(p, targets)#indices, anch = self.find_9_positive(p, targets)matching_bs = [[] for pp in p]matching_as = [[] for pp in p]matching_gjs = [[] for pp in p]matching_gis = [[] for pp in p]matching_targets = [[] for pp in p]matching_anchs = [[] for pp in p]nl = len(p)    for batch_idx in range(p[0].shape[0]):# 取出batch对应的targetb_idx = targets[:, 0]==batch_idxthis_target = targets[b_idx]if this_target.shape[0] == 0:continue# 取出对应的真实框,转换为x1,y1,x2,y2txywh = this_target[:, 2:6] * imgs[batch_idx].shape[1]txyxy = xywh2xyxy(txywh)pxyxys = []p_cls = []p_obj = []from_which_layer = []all_b = []all_a = []all_gj = []all_gi = []all_anch = []for i, pi in enumerate(p):# 有时候index会为空,代表某一层没有对应的锚框# b代表batch_index,a代表anchor_indices,# gj,gi代表网格索引b, a, gj, gi = indices[i]idx = (b == batch_idx)b, a, gj, gi = b[idx], a[idx], gj[idx], gi[idx]                all_b.append(b)all_a.append(a)all_gj.append(gj)all_gi.append(gi)all_anch.append(anch[i][idx])# size为初筛后的候选框数量,值为输出层的索引from_which_layer.append(torch.ones(size=(len(b),)) * i) # 来自哪个输出层fg_pred = pi[b, a, gj, gi]   # 对应网格的预测结果p_obj.append(fg_pred[:, 4:5])p_cls.append(fg_pred[:, 5:])grid = torch.stack([gi, gj], dim=1) # 网格坐标# 与候选框的偏移相对应,若x,y分别为相对于网格的距离,范围为0~1,经过偏移后,x,y的取值范围为-0.5~1.5# 而下面的预测结果经过sigmoid后的范围为0~1,最终计算的范围为-0.5~1.5pxy = (fg_pred[:, :2].sigmoid() * 2. - 0.5 + grid) * self.stride[i] #/ 8.#pxy = (fg_pred[:, :2].sigmoid() * 3. - 1. + grid) * self.stride[i]# 对w和h也进行限制,初筛的时候,我们将宽高比大于4的都去掉了,因此,预测的范围也为0-4pwh = (fg_pred[:, 2:4].sigmoid() * 2) ** 2 * anch[i][idx] * self.stride[i] #/ 8.pxywh = torch.cat([pxy, pwh], dim=-1)pxyxy = xywh2xyxy(pxywh)    # 转换为x,y,w,hpxyxys.append(pxyxy)pxyxys = torch.cat(pxyxys, dim=0)if pxyxys.shape[0] == 0:continue# 对三层的结果进行汇总,可能有些层结果为空p_obj = torch.cat(p_obj, dim=0)p_cls = torch.cat(p_cls, dim=0)from_which_layer = torch.cat(from_which_layer, dim=0)all_b = torch.cat(all_b, dim=0)all_a = torch.cat(all_a, dim=0)all_gj = torch.cat(all_gj, dim=0)all_gi = torch.cat(all_gi, dim=0)all_anch = torch.cat(all_anch, dim=0)# 计算ciou损失pair_wise_iou = box_iou(txyxy, pxyxys)pair_wise_iou_loss = -torch.log(pair_wise_iou + 1e-8)# 取出iou损失中最小的topk,如果多于10个候选框,取10个,少于10个候选框,全部取top_k, _ = torch.topk(pair_wise_iou, min(10, pair_wise_iou.shape[1]), dim=1)# 对iou进行累加操作,最后取[iou之和]个候选框,相当于iou很小的候选框统统不要,最小为1个dynamic_ks = torch.clamp(top_k.sum(1).int(), min=1)# 将类别转换为one_hot编码格式gt_cls_per_image = (F.one_hot(this_target[:, 1].to(torch.int64), self.nc).float().unsqueeze(1).repeat(1, pxyxys.shape[0], 1))# 真实框目标的个数num_gt = this_target.shape[0]# 预测概率:p_obj*p_clscls_preds_ = (p_cls.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()* p_obj.unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_())y = cls_preds_.sqrt_()pair_wise_cls_loss = F.binary_cross_entropy_with_logits(torch.log(y/(1-y)) , gt_cls_per_image, reduction="none").sum(-1)del cls_preds_# 总损失:cls_loss+iou_losscost = (pair_wise_cls_loss+ 3.0 * pair_wise_iou_loss)matching_matrix = torch.zeros_like(cost)# 取出损失最小的候选框的索引for gt_idx in range(num_gt):_, pos_idx = torch.topk(cost[gt_idx], k=dynamic_ks[gt_idx].item(), largest=False)matching_matrix[gt_idx][pos_idx] = 1.0del top_k, dynamic_ks# 竖着加anchor_matching_gt = matching_matrix.sum(0)# 处理多个真实框匹配到了同一候选框的情况,此时对应的anchor_matching_gt > 1if (anchor_matching_gt > 1).sum() > 0:# 比较哪一个真实框跟这个候选框的损失最小_, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)matching_matrix[:, anchor_matching_gt > 1] *= 0.0# 损失最小的真实框匹配上该候选框,其他地方置为0matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1.0# 正样本索引fg_mask_inboxes = matching_matrix.sum(0) > 0.0# 正样本对应真实框的索引matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)# 汇总from_which_layer = from_which_layer[fg_mask_inboxes]all_b = all_b[fg_mask_inboxes]all_a = all_a[fg_mask_inboxes]all_gj = all_gj[fg_mask_inboxes]all_gi = all_gi[fg_mask_inboxes]all_anch = all_anch[fg_mask_inboxes]# 真实框this_target = this_target[matched_gt_inds]# 按照三个输出层合并信息for i in range(nl):layer_idx = from_which_layer == imatching_bs[i].append(all_b[layer_idx])matching_as[i].append(all_a[layer_idx])matching_gjs[i].append(all_gj[layer_idx])matching_gis[i].append(all_gi[layer_idx])matching_targets[i].append(this_target[layer_idx])matching_anchs[i].append(all_anch[layer_idx])# 按照输出层,汇总整个batch的信息for i in range(nl):if matching_targets[i] != []:matching_bs[i] = torch.cat(matching_bs[i], dim=0)matching_as[i] = torch.cat(matching_as[i], dim=0)matching_gjs[i] = torch.cat(matching_gjs[i], dim=0)matching_gis[i] = torch.cat(matching_gis[i], dim=0)matching_targets[i] = torch.cat(matching_targets[i], dim=0)matching_anchs[i] = torch.cat(matching_anchs[i], dim=0)else:matching_bs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_as[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_gjs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_gis[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_targets[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)matching_anchs[i] = torch.tensor([], device='cuda:0', dtype=torch.int64)return matching_bs, matching_as, matching_gjs, matching_gis, matching_targets, matching_anchs 

损失函数:

        损失函数与YOLO v5 r6.1版本并无变化,主要包含分类损失、存在物体置信度损失以及边界框回归损失。分类损失和置信度损失均使用交叉熵损失。回归损失使用C-IOU损失。 

辅助头网络结构:

    当添加辅助输出时,网络结构的输入为1280*1280,第一层需要对图片进行下采样,作者考虑到节省参数,第一层下采样采取间隔采样的做法。     

代码如下:

class ReOrg(nn.Module):def __init__(self):super(ReOrg, self).__init__()def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)

        对于辅助输出,一共有八层,对于辅助输出,在损失函数的处理上有所区别,在标签分配上,辅助输出的偏移量为1,因此一共有5个网格,另外,在候选框的初步筛选上,辅助头的top_k为20。这一系列的处理,能够提升辅助头输出的召回率。因此,辅助头更加关注召回率。在损失函数上,辅助头的损失计算用0.25进行缩放。

 

模型的重参数化: 

        卷积和bn的重参数化:bn层的公式如图所示,可以变换为wx+b的形式

 

                 因此,可以得到bn层w和b的权重矩阵。

 

        将卷积公式带入其中,最终得到融合的权重矩阵和偏差的计算公式。 

 

 

 对于1*1和3*3卷积的参数化,将1*1的卷积核周围用0填充和3*3的卷积核相加

 

 

 


http://www.ppmy.cn/news/677305.html

相关文章

YOLOv7训练自己的数据集

目录 1、制作YOLO格式数据集 1.1、数据集 1.2、如何转换为YOLOv7所需的格式? 1.3、如何批量化生成YOLO格式的txt标注 1.4、如何划分YOLO的train、val和test 2、使用YOLOv&#xff17;训练自己的模型 2.1、测试预训练的yolov7.pt &#xff08;1&#xff09;测试图片 &…

全志T7芯片处理器参数介绍

全志T7处理器专门针对新一代智能座舱打造&#xff0c;可以满足信息娱乐系统、数字仪表、360环视系统、ADAS、DMS、流媒体后视镜、云镜等多个不同智能化系统的运行需求&#xff0c;让车企仅仅凭借一款芯片&#xff0c;就可以实现上述产品的开发&#xff0c;从而很好地帮助整车厂…

SMD元件尺寸大小公制英制对应说明

SMT知识-SMD元件尺寸大小,公制英制对应说明 英制(mil)公制(mm)长(L)(mm)宽(W)(mm)高(t)(mm)a(mm)b(mm)020106030.600.050.300.050.230.050.100.050.150.05040210051.000.100.500.100.300.100.200.100.250.10060316081.600.150.800.150.400.100.300.200.300.20080520122.000.20…

lv双肩包尺寸对照表_LV型号与对应的尺寸表

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 M51146 花布 W24xH21xD10.5 M51147 花布 W28xH17xD9 M51172 花布 W21xH21xD8.5 M51170 花布 W29.5xH33xD10.5 M51155 花布 W40.5xH30.5xD10.5 M51512 花布 W33xH23xD10 M51257 花布 W25.5xH18.5xD6.5 M51388 花布…

常见卷积尺寸计算

在搭配深度学习多个卷积层时我们经常要计算卷积层的输出张量的尺寸大小&#xff0c;可以用如下公式计算&#xff1a; 1, 公式 卷积层输出尺寸&#xff1a; o ?(i 2p - k) / s? 1 式中&#xff0c;i:输入尺寸&#xff1b;o:输出尺寸&#xff1b;p:padding&#xff1b;k: …

普通平键的主要尺寸有_普通平键的尺寸规范

轴径 键 较紧 轴H9 毂D10 轴N8 毂JS9 轴毂P9 6~8 22 2 0.025 0.06 -0.004 -0.006 >8~10 33 3 0 0.02 -0.029 -0.031 >10~12 44 4 0.03 0.078 0 -0.012 >12~17 55 5 0 0.03 -0.03 -0.042 >17~22 66 6 >22~30 87 8 0.036 0.098 0 -0.015 >30~38 108 10 0 0.04 -0.036 -0.05…

【弱网】clumsy的filter语法设置

clumsy 官方说明 jagt WinDivert 的语法 https://github.com/basil00/Divert/wiki/WinDivert-Documentation#7-filter-languageDivert大神们的改版 clumsy-regoutbound 发送 inbound

vscode关闭调试工具栏

问题描述 项目启动的时候老是蹦出这玩意 很碍眼 解决方案&#xff1a; 设置里搜索 选项改为hidden即可