【数据结构与算法】时间复杂度与空间复杂度

news/2024/11/27 0:11:42/

目录

一.前言

二.时间复杂度

1.概念

二.大O的渐进表示法

概念:

总结:

三.常见时间复杂度计算举例

例1

例2

例3

例4

例5.计算冒泡排序的时间复杂度

例6.二分算法的时间复杂度

例7.阶乘递归Fac的时间复杂度

例8.斐波那契递归的时间复杂度

四.常见时间复杂度对比

 五.空间复杂度

概念

例1

例2

例3


一.前言

从这篇文章开始,C语言的学习就结束了,接下来将会开启数据结构与算法的学习。

早期,计算机刚被发明出来,内存空间并不是很大,所以不仅追求程序运行时的时间效率,还追求空间效率,但发展到今天,已经不太追求空间效率了,时间效率的追求是不变的。

下面就让我们一起学习时间复杂度和空间复杂度是什么吧~

二.时间复杂度

1.概念

1.时间复杂度是一个函数(注意这不是编程语言里的函数,而是数学意义上的函数)

2.这个函数指的是算法跑的次数的函数,并不是算法运行的时间,因为同一个算法在不同的机器上运行的时间可能是不同的,用算法的运行时间表示时间复杂度是欠妥的;

3.一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

二.大O的渐进表示法

概念:

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数
2、在修改后的运行次数函数中,只保留最高阶项
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

需要注意的是算法运行时可能会存在最好情况,最坏情况,平均情况,这个时候我们取最坏情况时的大O;

最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)

总结:

1.大O里的数就是函数表达式中对结果影响最大的项,或是最大的量级所在的项

2.如果这个项的系数不是1,那么将它变成1,简单来说,这个项前面的系数得是1

3.如果函数表达式是个常数,不管这个常数多大,都写成O( 1 )

光说不练假把式,让我们通过例题来更好的理解上述所说吧~


三.常见时间复杂度计算举例

例1

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

不难看出:

Func1 执行的基本操作次数 :

             F(N)=N^2+2^N+10

  N = 10        F(N) = 130
  N = 100      F(N) = 10210
  N = 1000    F(N) = 1002010

显然最大的量级是 N^2

所以时间复杂度为O(N^2)


例2

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

F(N)=2*N+10

影响最大的项为2*N,因为它的系数不是1,所以要变成1,即

时间复杂度:O(N)


例3

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

F(N)=M+N

由于并未明确告知M和N的关系,所以时间复杂度:O(M+N)

若M远大于N,则为O(M);

若N远大于M,则为O(N);

若亮着差不多大,则为O(N)或O(M);


例4

// 计算Func4的时间复杂度?
void Func4(int)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

F(N)=100

这是一个常数,所以时间复杂度:O(1)


例5.计算冒泡排序的时间复杂度

不了解冒泡算法请戳我

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

最好情况:

原本已排好序,所以进入第二个for循环时不进入if语句,所以exchange==0,直接跳出循环,所以时间复杂度:O(N)

最坏情况:

执行完了所有的循环,所以时间复杂度:O(N^2)

取最坏情况,所以最终的时间复杂度为:O(N^2)

如果没有exchange相关语句,那么最好情况和最坏情况都是O(N^2)


例6.二分算法的时间复杂度

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

最好情况:

第一次就找到了,所以时间复杂度:O(1)

最坏情况:

找到就剩最后一个数才找到

设数组中有N个数,一共找了X次

所以

      N/(2*2*2*2.....*2)=1

     一共X个2,即:2^X=N  ->  X=logN(注意这是一个简写,真正的意思是以2为底的N的对数)

所以取最坏情况 ,时间复杂度:O(logN)


例7.阶乘递归Fac的时间复杂度

long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

不难看出一共会递归N次,所以时间复杂度为:O(N)     


例8.斐波那契递归的时间复杂度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

对于这种较复杂的时间复杂度的计算可以通过画图来观察;

 

 三角形那一块是缺失的部分;

通过上图我们发现,一共会执行F(N)=2^N-X(这个X是一个常数)

所以时间复杂度:O(2^N)


四.常见时间复杂度对比

一般算法常见的复杂度如下:

 


 五.空间复杂度

概念

1.空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度;
2.空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数;
3.空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法;
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

例1

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

显然上面的代码带上形参共有5个变量,根据大O渐进法的规则,空间复杂度:O(1);

例2

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

上述代码除了5个变量外,还有malloc函数开辟的n+1个空间,F(N)=n+6,

即空间复杂度:O(n)

例3

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}

这是一个递归,每次进入递归时都会再次创建变量,建立栈帧,返回时销毁变量,上述代码啊一共会递归N次,所以会创建N个变量,

即空间复杂度:O(N)


😸😼到此本篇文章就结束了,这是数据结构的第一篇文章,往后也会继续更新的;🤖👻

🥰😍若本篇文章有错误或是有建议,欢迎小伙伴们提出哦;😄🤩

😃😁希望各位大佬们多多支持博主~🤩😍

🦖🐲谢谢你的阅读。🐯🦁


http://www.ppmy.cn/news/26082.html

相关文章

第63章 SQL 快速参考教程

第63章 SQL 快速参考教程 SQL 语句语法AND / ORSELECT column_name(s) FROM table_name WHERE condition AND|OR conditionALTER TABLEALTER TABLE table_name ADD column_name datatypeor ALTER TABLE table_name DROP COLUMN column_name AS (alias)SELECT column_name AS …

C++ STL 学习之【string】

✨个人主页&#xff1a; Yohifo &#x1f389;所属专栏&#xff1a; C修行之路 &#x1f38a;每篇一句&#xff1a; 图片来源 The key is to keep company only with people who uplift you, whose presence calls forth your best. 关键是只与那些提升你的人在一起&#xff0c…

yum/vim工具的使用

yum 我们生活在互联网发达的时代&#xff0c;手机电脑也成为了我们生活的必须品&#xff0c;在你的脑海中是否有着这样的记忆碎片&#xff0c;在一个明媚的早上你下定决心准备发奋学习&#xff0c;“卸载”了你手机上的所有娱乐软件&#xff0c;一心向学&#xff01;可是到了下…

一问学习StreamAPI终端操作

Java Stream管道流是用于简化集合类元素处理的java API。 在使用的过程中分为三个阶段&#xff1a; 将集合、数组、或行文本文件转换为java Stream管道流管道流式数据处理操作&#xff0c;处理管道中的每一个元素。上一个管道中的输出元素作为下一个管道的输入元素。管道流结果…

自抗扰控制ADRC之微分器TD

目录 前言 1 全程快速微分器 1.1仿真分析 1.2仿真模型 1.3仿真结果 1.4结论 2 Levant微分器 2.1仿真分析 2.2仿真模型 2.3仿真结果 3.总结 前言 工程上信号的微分是难以得到的&#xff0c;所以本文采用微分器实现带有噪声的信号及其微分信号提取&#xff0c;从而实现…

C语言中用rand()函数产生一随机数

在C语言中如何产生一个随机数呢&#xff1f;用rand()函数。 rand()函数在头文件&#xff1a;#include <stdio.h>中&#xff0c;函数原型&#xff1a;int rand(void);。rand()会返回一个范围在0到RAND_MAX&#xff08;32767&#xff09;之间的随机数&#xff08;整数&…

ChatGPT国内镜像站初体验:聊天、Python代码生成等

ChatGPT国内镜像站初体验&#xff0c;聊天、Python代码生成。 (本文获得CSDN质量评分【92】)【学习的细节是欢悦的历程】Python 官网&#xff1a;https://www.python.org/ Free&#xff1a;大咖免费“圣经”教程《 python 完全自学教程》&#xff0c;不仅仅是基础那么简单………

Java爬虫—WebMagic

一&#xff0c;WebMagic介绍WebMagic企业开发&#xff0c;比HttpClient和JSoup更方便一&#xff09;&#xff0c;WebMagic架构介绍WebMagic有DownLoad&#xff0c;PageProcessor&#xff0c;Schedule&#xff0c;Pipeline四大组件&#xff0c;并有Spider将他们组织起来&#xf…