一阶线性微分方程的形式如下:
y′+p(x)y=q(x)y'+p(x)y=q(x)y′+p(x)y=q(x)
对于式子左侧,长得像下式,但不太一样
(uv)′=u′v+uv′(uv)'=u'v+uv'(uv)′=u′v+uv′
y′⋅1+y⋅p(x)y' ·1+y ·p(x)y′⋅1+y⋅p(x)
这里对应vvv看似得不到一个合适的,但是借助[ef(x)]′=ef(x)⋅f′(x)[e^{f(x)}]'=e^{f(x)}·f'(x)[ef(x)]′=ef(x)⋅f′(x)可以发现能构造出类似的,即下式
y′⋅e∫p(x)dx+y⋅e∫p(x)dx⋅p(x)y'·e^{\int p(x)dx}+y·e^{\int p(x)dx}·p(x)y′⋅e∫p(x)dx+y⋅e∫p(x)dx⋅p(x)
提出相同系数:
e∫p(x)dx⋅[y′⋅1+y⋅p(x)]e^{\int p(x)dx}·[y'·1+y·p(x)]e∫p(x)dx⋅[y′⋅1+y⋅p(x)]
原式等号右侧增补相同系数可得到式子整体(待化简)
e∫p(x)dx⋅[y′⋅1+y⋅p(x)]=e∫p(x)dx⋅q(x)e^{\int p(x)dx}·[y'·1+y·p(x)]=e^{\int p(x)dx}·q(x)e∫p(x)dx⋅[y′⋅1+y⋅p(x)]=e∫p(x)dx⋅q(x)
于是化简得到:
[y⋅e∫p(x)dx]′=e∫p(x)dx⋅q(x)[y·e^{\int p(x)dx}]'=e^{\int p(x)dx}·q(x)[y⋅e∫p(x)dx]′=e∫p(x)dx⋅q(x)
左侧是求导,给积回去,右侧得添积分号:
y⋅e∫p(x)dx=∫e∫p(x)dx⋅q(x)dx+Cy·e^{\int p(x)dx}=\int {e^{\int p(x)dx}·q(x)dx + C}y⋅e∫p(x)dx=∫e∫p(x)dx⋅q(x)dx+C
将y系数化为1得最终结论通解公式:
y=e−∫p(x)dx⋅∫e∫p(x)dx⋅q(x)dx+Cy= e^{-\int p(x)dx}·\int {e^{\int p(x)dx}·q(x)dx + C}y=e−∫p(x)dx⋅∫e∫p(x)dx⋅q(x)dx+C
且通解就是全部解