PyTorch ConvTranspose2d 的定义与计算过程

news/2025/2/15 11:39:38/

PyTorch ConvTranspose2d 的定义与计算过程

1. CONVTRANSPOSE2D (ConvTranspose2d)

https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

Applies a 2D transposed convolution operator over an input image composed of several input planes.
二维转置卷积运算符。

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true inverse of convolution).
该模块可以看作是 Conv2d 相对于其输入的梯度。它也被称为分数步长卷积或反卷积/逆卷积 (尽管它不是实际的反卷积/逆卷积操作,因为它不是卷积的逆向计算)。

gradient ['ɡreɪdiənt]:n. 倾斜度,梯度变化曲线 adj. 倾斜的,步行的
fractionally [ˈfrækʃənəli]:adv. 很小,很少
cross-correlation:互相关

the visualizations: https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
the paper: https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

  • stride controls the stride for the cross-correlation.
    步长。

  • padding controls the amount of implicit zero padding on both sides for dilation * (kernel_size - 1) - padding number of points. See note below for details.

  • output_padding controls the additional size added to one side of the output shape. See note below for details.

  • dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but the link here has a nice visualization of what dilation does.

    {groups_note}

The parameters kernel_size, stride, padding, output_padding can either be:

  • a single int – in which case the same value is used for the height and width dimensions

  • a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension

    Note:
    The :attr:padding argument effectively adds dilation * (kernel_size - 1) - padding
    amount of zero padding to both sizes of the input. This is set so that
    when a :class:~torch.nn.Conv2d and a :class:~torch.nn.ConvTranspose2d
    are initialized with same parameters, they are inverses of each other in
    regard to the input and output shapes. However, when stride > 1,
    :class:~torch.nn.Conv2d maps multiple input shapes to the same output
    shape. :attr:output_padding is provided to resolve this ambiguity by
    effectively increasing the calculated output shape on one side. Note
    that :attr:output_padding is only used to find output shape, but does
    not actually add zero-padding to output.

    Note:
    {cudnn_reproducibility_note}

Parameters

  • in_channels (int): Number of channels in the input image
    输入的通道数。

  • out_channels (int): Number of channels produced by the convolution
    输出的通道数。

  • kernel_size (int or tuple): Size of the convolving kernel
    卷积核的大小。

  • stride (int or tuple, optional): Stride of the convolution. Default: 1
    卷积的步长。

  • padding (int or tuple, optional): dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Default: 0

  • output_padding (int or tuple, optional): Additional size added to one side of each dimension in the output shape. Default: 0

  • groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1

  • bias (bool, optional): If True, adds a learnable bias to the output. Default: True
    偏置。

  • dilation (int or tuple, optional): Spacing between kernel elements. Default: 1

Shape

  • Input: (N,Cin,Hin,Win)(N, C_{in}, H_{in}, W_{in})(N,Cin,Hin,Win) or (Cin,Hin,Win)(C_{in}, H_{in}, W_{in})(Cin,Hin,Win)
  • Output: (N,Cout,Hout,Wout)(N, C_{out}, H_{out}, W_{out})(N,Cout,Hout,Wout) or (Cout,Hout,Wout)(C_{out}, H_{out}, W_{out})(Cout,Hout,Wout), where

Hout=(Hin−1)×stride[0]−2×padding[0]+dilation[0]×(kernel_size[0]−1)+output_padding[0]+1H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1Hout=(Hin1)×stride[0]2×padding[0]+dilation[0]×(kernel_size[0]1)+output_padding[0]+1

Wout=(Win−1)×stride[1]−2×padding[1]+dilation[1]×(kernel_size[1]−1)+output_padding[1]+1W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1Wout=(Win1)×stride[1]2×padding[1]+dilation[1]×(kernel_size[1]1)+output_padding[1]+1

Variables

  • weight (Tensor): the learnable weights of the module of shape
    (in_channels,out_channelsgroups,kernel_size[0],kernel_size[1])(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}}, \text{kernel\_size[0]}, \text{kernel\_size[1]})(in_channels,groupsout_channels,kernel_size[0],kernel_size[1]). The values of these weights are sampled from U(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})U(k,k) where k=groupsCout∗∏i=01kernel_size[i]k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}k=Couti=01kernel_size[i]groups
  • bias (Tensor): the learnable bias of the module of shape (out_channels)(\text{out\_channels})(out_channels). If bias is True, then the values of these weights are sampled from U(−k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k})U(k,k) where k=groupsCout∗∏i=01kernel_size[i]k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}k=Couti=01kernel_size[i]groups

Examples::

    >>> # With square kernels and equal stride>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)>>> # non-square kernels and unequal stride and with padding>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))>>> input = torch.randn(20, 16, 50, 100)>>> output = m(input)>>> # exact output size can be also specified as an argument>>> input = torch.randn(1, 16, 12, 12)>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)>>> h = downsample(input)>>> h.size()torch.Size([1, 16, 6, 6])>>> output = upsample(h, output_size=input.size())>>> output.size()torch.Size([1, 16, 12, 12])

References

https://yongqiang.blog.csdn.net/


http://www.ppmy.cn/news/1897.html

相关文章

贪心:区间问题

目录前言区间选点Code最大不相交区间数量Code区间分组Code区间覆盖Code前言 贪心真是玄学,规律全靠猜,证实靠样例! 区间选点 给定 NNN 个闭区间 [ai,bi][a_i,b_i][ai​,bi​],请你在数轴上选择尽量少的点,使得每个区…

[网络工程师]-应用层协议-电子邮件协议

常见的电子邮件协议有简单邮件传输协议、邮局协议和Internet邮件访问协议。 1、简单邮件传输协议(Simple Mail Transfer Protocol,SMTP) SMTP主要负责将电子邮件从发送方传送到接收方,即对传输的规则做了规定,该协议工…

XX集团BIM项目解决方案

目 录 一、BIM发展现状 二、集团BIM建设总体规划(建议) 1、BIM实施目标 2、BIM实施的范围 3、BIM实施原则 4、集团BIM项目组织架构 4.1职能分配 4.2建模组织形式 4.3人员匹配建议 5、集团BIM应用功能架构 5.1 BIM平台对集团管理层面的价值 5…

[ vulhub漏洞复现篇 ] Apache Solr RemoteStreaming 文件读取与SSRF漏洞 (CVE-2021-27905)

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

[附源码]Python计算机毕业设计Django实验室管理系统

项目运行 环境配置: Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术: django python Vue 等等组成,B/S模式 pychram管理等等。 环境需要 1.运行环境:最好是python3.7.7,…

Spring - FactoryBean扩展接口

文章目录Preorg.springframework.beans.factory.FactoryBeanFactoryBean中的设计模式----工厂方法模式FactoryBean VS BeanFactory源码解析扩展示例Pre Spring Boot - 扩展接口一览 org.springframework.beans.factory.FactoryBean package org.springframework.beans.factory…

【git 介绍】AhuntSun

Git应用详解第一讲:Git分区,配置与日志 Git应用详解第二讲:Git删除、修改、撤销操作 Git应用详解第三讲:本地分支的重要操作 Git应用详解第四讲:版本回退的三种方式与stash Git应用详解第五讲:远程仓库…

19-29-k8s-基本命令-yaml-kubectl

19-k8s-基本命令-yaml-kubectl: Kubernetes 集群的命令行工具kubectl 1、kubectl 命令格式: kubectl [command] [type] [name] [flags] 参数: command:指定要对资源执行的操作,例如create、get、describe、delete t…