数据结构(java实现)——优先级队列,堆

news/2025/1/15 12:38:12/

文章目录

    • 优先级队列
      • 堆的概念
      • 堆的模拟实现
        • 创建堆
        • 入堆
        • 判满
        • 删除
        • 判空
        • 获取栈顶元素
      • 创建堆两种方式的时间复杂度
      • 堆排序
      • java提供的PriorityQueue类
        • 基本的属性
        • 关于PriorityQueue类的三个构造方法
        • 关于PriorityQueue类中,入堆方法是怎样实现的?
        • PriorityQueue注意事项
      • 堆的一个oj题


优先级队列

前面介绍过队列,队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级,一般出队列时,可能需要优先级高的元素先出队列,该种场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

优先级队列是一种概念的数据结构,我们使用堆这种具体的数据结构来实现它。

堆的概念

堆是一棵以数组方式存储的完全二叉树。
存储方式按照层序遍历的方式存储。

堆又分为小根堆,大根堆两种:
大根堆是指所有的节点值比其左右节点值都大(左右节点在的情况下)。
大根堆的根节点是最大值
小根堆是指所有的节点指比其左右节点值都小(左右节点在的情况下)。
小根堆的根节点是最小值
在这里插入图片描述

堆的模拟实现

我们以大根堆举例:
实现的方法与属性:

public class PriorityQueue {public int[] elem;public int usedSize;//初始化长度为10的数组public PriorityQueue() {elem = new int[10];}//创建建堆public void createHeap(int[] array) {}private void shiftDown(int root,int len) {}// 入堆:仍然要保持是大根堆public void push(int val) {}private void shiftUp(int child) {}//判断堆是否满public boolean isFull() {}//每次删除的都是优先级高的元素,删除后任是大根堆public void pollHeap() {}//判断堆是否为空public boolean isEmpty() {}// 获取堆顶元素public int peekHeap() {}
}
创建堆

创建堆的方式有两种,一种是向上调整,向下调整。
我们依次介绍:
向下调整:根据一组数据创建成一个大根堆,以{1,5,3,8,7,6}举例:
在这里插入图片描述

 所以向下调整的含义即每一棵子树均从根节点开始向下比较。

实现思想:

  1. createHeap思路:

先将数组拷贝进成员数组中(注意看长度是否够)。
我们从最后一棵子树的根节点开始调用shiftDown方法向上一棵一棵树的调整为大根堆。
2. shiftDown思路:

将当前传入的根节点与他的孩子节点将最大值选出作为根。
然后将根变成孩子节点再次调整。
注意挑选最大值的时候要判断不能让下标越界。

public void createHeap(int[] array) {if(elem.length < array.length){elem = Arrays.copyOf(elem, elem.length * 2);}for (int i = 0; i < array.length; i++){elem[i] = array[i];usedSize++;}for (int root = (usedSize -1 -1) / 2; root >= 0 ; root--) {siftDown(root,usedSize);}}private void siftDown(int root,int len) {int child = root * 2 + 1;while (child < len){//寻找孩子节点的大值if(child + 1 < len && elem[child] < elem[child + 1]){child++;}if(elem[root] < elem[child]){swap(elem,root,child);root = child;child = root * 2 + 1;}else {break;}}}//交换函数private void swap(int[] array,int x,int y){int tmp = array[x];array[x] = array[y];array[y] = tmp;}

向上调整:
向上调整的思路即以入堆的方式,将每一个元素依次插入堆中。
在这里插入图片描述

 我们从最后一棵节点开始于其子树的根节点比较,这个向上比较的过程,我们称为向上调整。

代码实现:

public class Test {public static void main(String[] args) {int [] array = {27,15,19,18,28,34,65,49,25,37};TestHeap testHeap = new TestHeap();for (int i = 0; i < array.length; i++) {testHeap.push(array[i]);}}
}
 具体的入堆代码,看下面。
入堆

在这里插入图片描述
代码思路:

  1. 先判断堆是否已经满了,满了要扩容。
  2. 在堆最后存入该元素,然后与父亲节点相比较,比父亲节点大就交换,直到到根节点或者比父亲节点小为止。
public void push(int val) {if(isFull()){elem = Arrays.copyOf(elem, elem.length*2);}elem[usedSize] = val;siftUp(usedSize);usedSize++;}private void siftUp(int child) {int parent = (child - 1) / 2;while(parent >= 0) {if (elem[parent] < elem[child]) {swap(elem, parent, child);child = parent;parent = (child - 1) / 2;}else {break;}}}
判满
public boolean isFull() {return usedSize == elem.length;}
删除

在这里插入图片描述
实现思想:

  1. 先判断堆是否为空,为空直抛空指针异常。
  2. 我们先将堆顶和堆尾交换,然后向下调整一次。
  3. usedSize减1。
public void pollHeap() throws NullPointerException {if (isEmpty()) {throw new NullPointerException();}swap(elem,0,usedSize-1);siftDown(0,usedSize);usedSize--;}
判空
public boolean isEmpty() {return usedSize == 0;}
获取栈顶元素

如果堆为空,抛空指针异常,没有直接返回堆顶元素。

public int peekHeap() throws NullPointerException {if (isEmpty()) {throw new NullPointerException();}return elem[0];}

创建堆两种方式的时间复杂度

向下调整的时间复杂度为O(N):
在这里插入图片描述
当计算复杂度时,只计算替换次数即可,不需要计算每次替换中语句的执行数目,因为到最后计算时,前面的系数均会变为1.
向上调整的时间复杂度为O(N*logN):
在这里插入图片描述

堆排序

假设我们要将一组数据在一个数组中从小到大排序,那我们要创建大根堆,还是小根堆?
如果要创建小根堆,我们只能保证堆顶元素为最小值,但是不能保证,左边的元素比右边的元素大,这不是小根堆的特性。
所以我们要创建大根堆
在这里插入图片描述

public void heapsort(){
//此方法是在创建大根堆之后的堆排序方法int end = Usedsize-1;while(end>0){swap(elem,0,end);siftDown(0,end);end--; }
}

java提供的PriorityQueue类

基本的属性

在这里插入图片描述

  1. DEFAULT_INITIAL_CAPACITY 为申请初始化空间大小的默认值
  2. queue为底层使用的数组
  3. size指数组中有效元素的个数
  4. comparator指类使用的比较器
关于PriorityQueue类的三个构造方法

在这里插入图片描述

这三个构造方法均调用了自己的第四个构造方法
在这里插入图片描述

所以我们直接看第四个构造方法实现逻辑:如果申请的空间大小小于1,则直接报异常,当大于等于1时,为优先级队列申请第一个参数数值大小的空间,并采用第二个参数的比较器。

关于PriorityQueue类中,入堆方法是怎样实现的?

在这里插入图片描述

PriorityQueue注意事项
  1. PriorityQueue中放置的元素必须是可以比较的,即实现了comparable接口的类,否则会报ClassCastException异常。
  2. 不能插入null对象,否则会报NullPointerException异常。
  3. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容。

堆的一个oj题

Topk问题,最小的k个数
这个题有三种做法:

  1. 直接进行整体堆排序。

  2. 直接建立一个小根堆,然后依次出堆顶元素,再调整

  3. 把前k个元素创建为大根堆,遍历剩下的N-K个元素,和栈顶元素比较,如果比栈顶元素小,则删除栈顶元素,将此元素入堆。
    此种算法的时间复杂度为:前k个元素创建一个大根堆的时间复杂度加上后面N-k个元素进行入堆操作的时间复杂度==klogk+(N-k)*logk == Nlogk
    采用第三种做法:

class Clmp implements Comparator<Integer>{@Overridepublic int compare(Integer o1, Integer o2) {return o2.compareTo(o1);}
}
class Solution {public int[] smallestK(int[] arr, int k) {int [] ret = new int[k];if(arr ==null||k==0){return ret;}PriorityQueue<Integer>priorityQueue = new PriorityQueue<>(k,new Clmp());//我们需要创建一个大根堆//将前k个元素插入到优先级队列中去for (int i = 0; i < k; i++) {priorityQueue.offer(arr[i]);}
//然后遍历剩余的元素for (int i = k; i <arr.length ; i++) {if(arr[i] < priorityQueue.peek()) {//则将两者的值进行交换priorityQueue.poll();priorityQueue.offer(arr[i]);}}ret = new int[k];for (int i = 0; i < k; i++) {ret[i]  = priorityQueue.poll();}return ret;}
}

http://www.ppmy.cn/news/1506062.html

相关文章

JavaFx中通过线程池运行或者停止多个周期性任务

在JavaFX中&#xff0c;要实现点击按钮启动多个周期性任务并通过多线程执行&#xff0c;并在任务结束后将结果写入多个文本组件中&#xff0c;同时提供另一个按钮来停止这些任务&#xff0c;你可以使用ScheduledExecutorService来管理周期性任务&#xff0c;并使用AtomicBoolea…

智能化的Facebook未来:AI如何重塑社交网络的面貌?

随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;社交网络的面貌正在经历深刻的变革。Facebook&#xff08;现Meta Platforms&#xff09;作为全球最大的社交媒体平台之一&#xff0c;正积极探索如何利用AI技术来提升用户体验、优化内容管理并推动平台创新。…

Iclone 8 摄像头切换

多个摄像头可以对每个摄像头制作动画&#xff0c;那要切换摄像头如何操作呢&#xff1f; 1.显示时间轴 2.轨道清单 3.项目 4.切换&#xff0c;在项目里面找到切换&#xff0c;点击右键[摄影机清单]就可以设置切换摄像头了。

Ubuntu环境安装MySQL

Ubuntu环境安装MySQL 1. 访问下载界面并下载发布包2. 安装发布包3. 安装MySQL 1. 访问下载界面并下载发布包 下载地址 也可直接去mysql.com官网下载 这里如果要下载其他版本的或可以去http://repo.mysql.com/这个网页查询相关的版本。 2. 安装发布包 使用切换到root用户…

Vue3与Vue2的主要区别

本篇文章适用于熟练掌握Vue2的小伙伴们&#xff0c;不想重新学习Vue3&#xff0c;那看本篇文章就够啦&#xff01;希望大家收获多多&#xff01;&#xff01; Vue3是向下兼容的&#xff0c;可以运行Vue2代码 一、页面区别 Vue2定义属性方法 <template><div ><…

JavaWeb-01(Java进阶内容详解,Html、CSS、JS)

一、前端技术结构分析 网页的结构&#xff08;HTML&#xff09;、表现(CSS)、行为(JS) 1.HTML定义界面整体结构 2.CSS定义页面样式 3.JS实现动态效果 二、HTML 2.1安装VS Code及前端开发插件 Chinese (Simplified) (简体中文) Language Pack for Visual Studio Code Code Spe…

数通学员福利 | 超详细考场战报!

大家好呀&#xff0c;我是来自誉天的学员---彭天奇&#xff0c;在前两天顺利通过了数通的HCIE考试。空话就不和大家赘述了&#xff0c;主要和大家讲一下我自己去考试的一个第一人称视角&#xff0c;以及考试环境&#xff0c;可能有些许繁琐&#xff0c;但我的主要目的是想让即将…

如何在亚马逊云科技AWS上利用LoRA高效微调AI大模型减少预测偏差

简介&#xff1a; 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案&#xff0c;帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践&#xff0c;并应用到自己的日常工作里。 在机器学习和人工智能领域&#xff0c;生成偏差…