【神经网络】卷积神经网络CNN

news/2025/2/27 8:25:35/

卷积神经网络

欢迎访问Blog全部目录!

文章目录

  • 卷积神经网络
  • 1. 神经网络概览
  • 2.CNN(Convolutional Neunal Network)
    • 2.1.学习链接
    • 2.2.CNN结构
      • 2.2.1.基本结构
        • 2.2.1.1输入层
        • 2.2.1.2.卷积层|Convolution Layers
        • 2.2.1.3.池化层|Pooling layers
        • 2.3.1.4.全连接层|Linear Layers
      • 2.2.2.核心要素
    • 2.3.pytorch CNN
      • 2.3.1.区分conv1d与conv2d
      • 2.3.2.CNN搭建与参数
      • 2.3.3.示意图:star:

1. 神经网络概览

Leijnen, Stefan & Veen, Fjodor. (2020). The Neural Network Zoo. Proceedings. 47. 9. 10.3390/proceedings47010009.

2.CNN(Convolutional Neunal Network)

CNN的核心为使用卷积核对图像矩阵进行卷积运算(线性运算)!!!

2.1.学习链接

学习笔记:深度学习(3)——卷积神经网络(CNN)理论篇_cnn理论-CSDN博客
【深度学习】一文搞懂卷积神经网络(CNN)的原理(超详细)_卷积神经网络原理-CSDN博客

2.2.CNN结构

2.2.1.基本结构

在这里插入图片描述

2.2.1.1输入层

​ 图片在计算机中是包括 (宽,高,深)的三维矩阵,元素为灰度值或RGB值,其中矩阵的深即为RGB层次。如果为RGB图片,图片深度为3。图片的三维矩阵即为CNN的输入。(宽,高)矩阵为1个channel,(宽,高)矩阵为特征图

​ 输入层即接收原始图片数据,CNN可以保留图片的连续像素(物体的不变性),加深神经网络对图片的理解。

2.2.1.2.卷积层|Convolution Layers

作用:捕捉图片的局部特征而不受其位置的影响。

多个卷积核叠加即为卷积层。

卷积层后需接激活函数(如ReLU)来引入非线性。

2.2.1.3.池化层|Pooling layers

作用:通过减小特征图的大小(下采样)来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。

有点类似于图像的模糊处理!

2.3.1.4.全连接层|Linear Layers

全连接层将提取的特征映射转化为网络的最终输出。这可以是一个分类标签、回归值或其他任务的结果。

2.2.2.核心要素

名称name含义
过滤器(卷积核)过滤器为可移动的三维小窗口矩阵(N*N*N)【kernel_size】,它是一组固定的权重。卷积操作即为将卷积核与图像进行逐元素相乘后相加。
步长stride卷积核每次滑动位置的步长。
卷积核的个数out_channels决定输出矩阵的深度depth。一个卷积核输出一个深度层。
填充值zero-padding在外围边缘补充若干圈0,方便从初始位置以步长为单位可以刚好滑倒末尾位置。数据填充的主要目的是确保卷积核能够覆盖输入图像的边缘区域,同时保持输出特征图的大小=输入特征图大小。
如果想要维持特征图大小不变, p a d d i n g = ( k e r n e l _ s i z e − 1 ) / 2 padding=(kernel\_size-1)/2 padding=(kernel_size1)/2!!

以下图为例(图示为conv2d):

步长=2,卷积核个数=2,填充值=1(在图片周围补1圈0),卷积核尺寸为3*3*3

请添加图片描述
在这里插入图片描述

2.3.pytorch CNN

API:torch.nn.convolution-layers — PyTorch 2.2 documentation

2.3.1.区分conv1d与conv2d

conv1dconv2d
输入语音:二维矩阵图像:三维矩阵
卷积核(卷积核尺寸(二维),卷积核个数)(卷积核尺寸(三维),卷积核个数)
总结在特征图内只能竖着扫在特征图内先横着扫再竖着扫

图像的CNN使用的是conv2d!!

2.3.2.CNN搭建与参数

import torch
import torch.nn as nnclass Cnn(nn.Module):def __init__(self):super(Cnn, self).__init__()self.conv1 = nn.Sequential(  # 输入图像尺寸为(1,28,28)nn.Conv2d(in_channels=1,  # 输入图像的深度 灰度图为1,rgb图为3out_channels=16,  # 卷积核个数,输出图像的深度kernel_size=5,  # 卷积核尺寸5*5*1stride=1,  # 步长padding=2  # 填充大小 如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2),  # 输出图像尺寸为(16,28,28)nn.ReLU(),  # 激活函数nn.MaxPool2d(kernel_size=2,  # 池化小区域尺寸2*2,区域模糊# stride=2,  # 步长,默认=kernel_size),  # 输出图像尺寸为(16,14,14))self.conv2 = nn.Sequential(  # 输入图像尺寸为(16,14,14)nn.Conv2d(in_channels=16,  # 输入图像的深度out_channels=32,  # 卷积核个数,输出图像的深度kernel_size=5,  # 卷积核尺寸5*5*16stride=1,  # 步长padding=2  # 填充大小),nn.ReLU(),nn.MaxPool2d(kernel_size=2,)  # 输出图像尺寸为(32,7,7))self.out = nn.Linear(32 * 7 * 7, 10)  # 输出10*1的矩阵def forward(self, x):x = self.conv1(x)x = self.conv2(x)# x图像平铺成 (batch_size=1, 32 * 7 * 7)x = x.view(x.size(0), -1)  # view中一个参数定为-1,代表自动调整这个维度上的元素个数,以保证元素的总数不变。output = self.out(x)return outputcnn = Cnn()
print(cnn)
'''
Cnn((conv1): Sequential((0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): ReLU()(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(conv2): Sequential((0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(1): ReLU()(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(out): Linear(in_features=1568, out_features=10, bias=True)
)
'''

2.3.3.示意图⭐️

注:由于画幅有限,示意图仅画了1个大卷积层。
在这里插入图片描述


http://www.ppmy.cn/news/1411665.html

相关文章

开源区块链系统/技术 总结(欢迎补充,最新)

1. FISCO BCOS FISCO BCOS 2.0 技术文档 — FISCO BCOS 2.0 v2.9.0 文档https://fisco-bcos-documentation.readthedocs.io/ 2. ChainMaker(长安链) 文档导航 — chainmaker-docs v2.3.2 documentationhttps://docs.chainmaker.org.cn/v2.3.2/html/in…

NineData创始人CEO叶正盛受邀参加『数据技术嘉年华』的技术大会

4月13日,NineData 创始人&CEO叶正盛受邀参加第13届『数据技术嘉年华』的技术大会。将和数据领域的技术爱好者一起相聚,并分享《NineData在10000公里跨云数据库间实时数据复制技术原理与实践》主题内容。 分享嘉宾 叶正盛,NineData CEO …

mysql基础命令和json类型

参考: MySQL操作命令_mysql8.1 create database default charset-CSDN博客 MySQL JSON数据类型_mysql json类型-CSDN博客

k8s部署efk

环境简介: kubernetes: v1.22.2 helm: v3.12.0 elasticsearch: 8.8.0 chart包:19.10.0 fluentd: 1.16.2 chart包: 5.9.4 kibana: 8.2.2 chart包:10.1.9 整体架构图: 一、Elasticsearch安装…

Vue - 你知道Vue中key的工作原理吗

难度级别:中级及以上 提问概率:80% 在Vue项目开发中,并不推荐使用索引做为key,以为key必须是唯一的,可以使用服务端下发的唯一ID值,也不推荐使用随机值做为key,因为如果每次渲染都监听到不一样的key,那么节点将无法复用,这与Vue节省…

自动驾驶中的传感器融合算法:卡尔曼滤波器和扩展卡尔曼滤波器

自动驾驶中的传感器融合算法:卡尔曼滤波器和扩展卡尔曼滤波器 附赠自动驾驶学习资料和量产经验:链接 介绍: 追踪静止和移动的目标是自动驾驶技术领域最为需要的核心技术之一。来源于多种传感器的信号,包括摄像头,雷达…

python-flask后端知识点

anki 简单介绍: 在当今信息爆炸的时代,学习已经不再仅仅是获取知识,更是一项关于有效性和持续性的挑战。幸运的是,我们有幸生活在一个科技日新月异的时代,而ANKI(Anki)正是一款旗舰级的学习工具…

信号处理基础

傅里叶分析之掐死教程(完整版)更新于2014.06.06 先放一篇关于傅里叶变换以及欧拉公式的讲解在这里。后续会搬运到CSDN上。