文章目录
- 机器学习模型—K means
- 聚类的目标
- k 均值原理
- k 均值 的实现
- 手动实现
- Python 实现
- K 的确定 手肘法
- 总结
机器学习模型—K means
K-Means 聚类是一种无监督机器学习算法,它将未标记的数据集分为不同的簇。本文旨在探讨 k 均值聚类的基本原理和工作原理以及实现。
无监督机器学习是让计算机使用未标记、未分类的数据并使算法能够在没有监督的情况下对这些数据进行操作的过程。如果没有任何先前的数据训练,在这种情况下,机器的工作就是根据相似性、模式和变化来组织数据。
K 表示聚类,根据数据点与聚类中心的距离将数据点分配给 K 个聚类之一。它首先在空间中随机分配簇心。然后,每个数据点根据其与簇心的距离分配给簇心之一。将每个点分配给其中一个簇后,将分配新的簇心,也就是重新当前整个簇中所有点的中心位置。这个过程迭代运行,直到找到好的集群。在分析中,我们假设簇的数量是预先给定的,并