机器学习:数据处理基操

news/2025/1/15 17:26:55/

在处理完数据之后,选择好模型,就可以用训练集训练模型,用测试集输入模型 然后输出需要预测的结果啦~

一、模块导入

import numpy as np
import pandas as pd #读入数据

二、pandas数据

一、dataframe基础

一、dataframe的创建

  • 通过字典来创建DataFrame

字典的键值表示列号,value用列表格式,表示该列的行数据。

外层key做列索引,内层key做行索引

persons = {'name': ['小睿', '小丽', '小明', '小红'],'age': [19, 18, 18, 17],'sex': ['男', '男', '女', '男'],
}
# 字典的key作为列索引
data_frame1 =pd.DataFrame(persons)

b9ddbe3b48a64ec4bf319e262a4a4863.png

二、从csv中读入

pd.read_csv()有很多参数

raw_data=pd.read_csv(path,names=names,header=None,delim_whitespace=True)

path指定文件路径,names指定列名,header指明csv文件中是否有列名,delim_whitespace、sep可以用来将同一列的数据分割成多列,usecols 可以选择数据中的列放入dataframe

names=['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS',
'RAD','TAX','PRTATIO','B','LSTAT','MEDV']
path='E:\Python项目程序\人工智能企业实训\housing.csv'
raw_data=pd.read_csv(path,names=names,header=None,delim_whitespace=True)
print(raw_df.head(3))#head用于读取多少行print(raw_df.describe())#按一列的来算
print(raw_df.info())#查看数据类型,如果有obj需要编码,最好用32类型的;也可以看是否存在空值

三、数据探索

我们可以查看数据是否有空值,数据的均值方差等来查看数据的特征,如果数据存在空值,我们可能需要进行缺失值处理。查看数据特征和异常值还可以通过画图来观察到。

使用dataframe的数据基本信息

方法:

  • head()
  • describe()
  • info()52565033a4b94668accf9838bbb59bb1.png1c93cb3a5cb54551b460c8e431ee4e20.png

由于数据集在同一列中,并且没有列名,因此我们需要使用sep将一列中的多个数据拆开,由于没有列名,需要使用header=None:

import pandas as pd
names=['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PRTATIO','B','LSTAT','MEDV']
df=pd.read_csv('./dataset.csv',names=names,header=None,delim_whitespace=True)#默认是当前路径下的文件,如果没有names=names,则列名默认从0开始编号
print(df.head())

注意:接下来的df全是这里用pd.read_csv()得到的。

一、head方法(查看前n行)

  • 输出dataframe中的前n行,标识出列名和行号
print(df.head())#默认输出数据前五行

ab6f88fbaa8f4f438f4488d32023fc9b.png

print(df.head(10))#输出数据前10行

ec6fd369528f4e9580750ff29cb54a01.png

二、describe方法(查看列的数学统计)

  • 输出dataframe中每一列的数学统计值。
print(df.describe())

b547414f92474565a9a8a5c27f06a036.png

它将打印每一列特征的个数,平均数,方差,最小值,最大值,以及箱型图中的25%、50%、75%。

三、info方法(查看空值和数据类型)

  • 输出每一列是否存在空值,以及类型
print(df.info())

5490df666b954918a0bc83834a3913c0.png

None被认为是空值

四、isnull方法(转换数据为是否为空)

  • 对每一个数据判断是否为空,不为空值为False(和notnull()方法相反)
  • 搭配sum()方法可以直接找到空值个数
  • df.isnull().sum() 每一列空值个数
  • df.isnull().sum().sum()数据中存在空值的个数
print(df.isnull())

05bc8edbfb454fcfa96a059e6a0920f1.png

print(df.isnull().sum())

4fec587b4f494bd0b9993fa14113999b.png

sum()方法类似于数据库中的聚集函数,对每一列求总和,输出出来,返回的是一个Series类型。还可以再使用一次sum(),求出series中元素的总和。

print(df.isnull().sum().sum())

c1e9ff79410e4fba9412e8895dcaaa4c.png

五、查看是否有空值

path='./data.csv'
df=pd.read_csv(path)print(df.isnull().sum())#输入每一列的空值个数
print(df.isnull().sum().sum())#输入总共的空值个数

四、数据预处理

我们要将需要预测的数据,和训练数据合并之后再进行一起处理,因为输入模型的数据格式要相同。之前在查看空值时,也应该合并。

train_data = pd.read_csv( "./data./train.csv")
test_data = pd.read_csv( "./data./test.csv")
# 合并train, test
data = pd.concat([train_data, test_data], axis=0)#因为要对列进行统一处理
'''axis=0是指在y轴上合并,即按行合并'''

一、缺失值处理

3cc57ac5e87e4511acc17c3e4262a022.png

缺失值处理有很多种方式,这里只写两个。将这些方法当做类调用即可,不需要关注实现。调用之后直接使用被填充后的数据。

IterativeImputer多变量缺失值填补

2336c04d719d4a6c87d8cbaf3aa44977.png

#df是df=pd.read_csv(path),从csv中读取到的文件,Dataframe格式
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputerimp_mean = IterativeImputer(random_state=0)#random_state是随机种子
imp_mean.fit(df)
filled_data =imp_mean.transform(df)
'''filled_data和df的区别就是 filled_data是数据已经被填充了的,并且filled_data不是Dataframe类型'''save_df=pd.DataFrame(filled_data)#保存填充后的文件
csv_path='./IterativeImputer.csv'
save_df.to_csv(csv_path,index=False)

②KNNImputer K近邻缺失值填补

该方法是借助 包含缺失值数据附近的 其他特征和它最像的 n_neighbors个数据的 该特征值的平均值来填补缺失值的。

from sklearn.impute import KNNImputerimputer=KNNImputer(n_neighbors=2)
df=pd.Dataframe(imputer.fit_transform(df))

解释:

'''使用具有缺失值的样本的两个最近邻居的平均特征值替换编码为np.nan的缺失值:'''
from sklearn.impute import KNNImputer
data = [[2, 4, 8], [3, np.nan, 7], [5, 8, 3], [4, 3, 8]]
imputer = KNNImputer(n_neighbors=1)
imputer.fit_transform(data)
'''可以看到,因为第二个样本的第一列特征3和第三列特征7,与第一行样本的第一列特征2和第三列特征8的欧氏距离最近,所以缺失值按照第一个样本来填充,填充值为4。那么n_neighbors=2呢?'''
imputer = KNNImputer(n_neighbors=2)
imputer.fit_transform(data)
'''此时根据欧氏距离算出最近相邻的是第一行样本与第四行样本,此时的填充值就是这两个样本第二列特征4和3的均值:3.5。'''

二、数据标准化

一、最大最小值缩放

from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
X1=scaler.fit_transform(df)

二、正态化数据

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler().fit(df)
X1=scaler.transform(df)

三、标准化数据(归一化)

Normalize Data 处理是将每一行数据的距离处理成1的数据,又叫归一化 适合处理稀疏数据(有很多0), 归一处理的数据对使用权重输入的神经网络和使用距离的K近邻准确度有显著提升

from sklearn.preprocessing import Normalizer
scaler=Normalizer().fit(df)
X1=transformer.transform(df)

三、数据编码、异常值处理

部分处理方式。日期需要特殊处理,对于一些值也可能需要进行数据清洗。

一、one-hot编码

data=data[['Survived','Pclass','Sex','Age','Fare','Embarked','Title','TicketGroup']]
#上面
data=pd.get_dummies(data)#ont-hot编码

 二、标签编码

from sklearn.preprocessing import LabelEncoder
cat_columns = data.select_dtypes(include='O').columns
for col in cat_columns:le = LabelEncoder()data[col] = le.fit_transform(data[col])
'''对非数值特征进行标签编码,即非数值编码成0,1,2,3,4'''
'''A,B,C变成0,1,2这种'''
'''one-hot编码需要大量存储空间'''

data.drop(['id'], axis=1, inplace=True)
train = data[data['label'].notnull()]
test = data[data['label'].isnull()].drop(['label'], axis=1)

五、特征选择

PCA主成分分析法、递归特征消除RFE、多维标度法MDS等等。

一、随机森林重要性得分(有很多种方式)

from sklearn.ensemble import ExtraTreesClassifier
model=ExtraTreesClassifier()
fit=model.fit(X,y) #X是从train中抽出的特征,y是标签
print(fit.feature_importances_)

二、递归特征消除RFE

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
rfe=RFE(model,3)
fit=rfe.fit(X,y)
print('被选定的特征',fit.support_)
print('特征排名:',fit.ranking_)

六、划分训练测试集

正确做法:先划分数据集,再分别进行同样的特征选择,防止数据泄露。

        因为测试集对于模型来说应该是“看不见”的,而对于计算特征得分,或者主成分分析,递归下降法等特征选择算法都需要对整个数据集进行考虑,因此为了使得测试集对于模型而言是完全未知的,就需要我们先将训练集和测试集分离之后,再分别用同样的方式进行特征选择。

        注意这样即使是使用降维的特征选择也是不会有问题的。因为我们在划分出测试集时,是进行随机抽取的,换句话说,由于随机性,测试集也具有数据的代表性。

from sklearn.model_selection import train_test_split'''-----------------选出特征和标签------------------------'''
#X选择特征列(一般不包含id号), Y选择标签列
X=raw_data.iloc[:,0:13]#dataframe 可以用iloc[行范围,列范围]选择特征列
Y=raw_data.iloc[:,13]#选择标签列'''----------划分训练集和测试集(如果没有可以测试模型得分的测试集时)------------'''
x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.1,random_state=11)
#按照test:train=0.1进行随机划分训练集和测试集 ,这里随机种子=11
#x_train -- y_train  ; x_test -- y_test
#将训练集进一步划分成训练集和验证集
x_train,x_val,y_train,y_val=train_test_split(x_train,y_train,test_size=0.1,random_state=11)#x_train 和 y_train作为输入用来进行模型训练。

七、绘图常用模块

import matplotlib.pyplot as plt
import seaborn as sns


http://www.ppmy.cn/news/1369941.html

相关文章

NoSQL--1.虚拟机网络配置

目录 1.初识NoSQL 1.1 NoSQL之虚拟机网络配置 1.1.1 首先,导入预先配置好的NoSQL版本到VMware Workstation中 1.1.2 开启虚拟机操作: 1.1.2.1 点击开启虚拟机: 1.1.2.2 默认选择回车CentOS Linux(3.10.0-1127.e17.x86_64) 7 …

作用域、解构、箭头函数

作用域 局部作用域 函数作用域(一直 存在) 块作用域(ES6,只有let和const有块级作用域&#xff0c;var没有) 块就是一对大括号&#xff0c;比如{ }、if(){ }、for(…){ } 使用var则失去块级作用域 //例如 for(var i1;i<3;i) {console.log(i)} console.log(i);//正确&…

在实训云平台上配置云主机

文章目录 零、学习目标一、实训云升级二、实训云登录&#xff08;一&#xff09;登录实训云&#xff08;二&#xff09;切换界面语言&#xff08;三&#xff09;规划云主机实例 三、创建网络三、创建路由器2024-2-29更新到此四、添加接口五、创建端口六、添加安全组规则七、创建…

【大厂AI课学习笔记NO.58】(11)混淆矩阵

混淆矩阵&#xff08;confusion matrix&#xff09;—— 混淆矩阵&#xff08;Confusion Matrix&#xff09;是人工智能领域&#xff0c;特别是在机器学习和深度学习中&#xff0c;用于衡量分类模型性能的重要工具。它通过统计分类模型的真实分类与预测分类之间的结果&#xf…

【高数】常数项级数概念与性质

下面为个人数学笔记&#xff0c;有需要借鉴即可。 一、常数项级数概念 二、常数项级数性质 三、调和级数 完。

DDR5 新特性概述

主页&#xff1a; 元存储博客 文章目录 前言1. SDR 与 DDR2. DDR5 的新特点总结 前言 DDR5 带来更快的处理速度和更大的存储空间&#xff0c;为云计算、大数据等领域的发展提供了强有力的支持。 1. SDR 与 DDR single data rate&#xff0c; 1 个时钟周期做一次数据传输 do…

CUDA学习笔记01:vs2019环境配置

为了在window11 vs2019下使用CUDA编程&#xff0c;配置了一下环境&#xff0c;但是我电脑一开始自带CUDA&#xff0c;然后再安装的vs2019&#xff0c;这样安装顺序上是不对的&#xff0c;vs2019找不到CUDA配置项&#xff0c;网上找了很多办法貌似都不好使而且很复杂。 那么最快…

今日arXiv最热大模型论文:谷歌最新研究,将LLM用于回归分析任务,显著超越传统模型

回归分析是一个强大的工具&#xff0c;能够准确预测系统或模型的结果指标&#xff0c;给定一组参数。然而&#xff0c;传统上这些方法仅适用于特定任务。本文研究者提出了OMNIPRED框架&#xff0c;这是一个训练语言模型作为通用端到端回归器的框架&#xff0c;它可以处理来自多…