HLS实现图像膨胀和腐蚀运算--xf_dilation和xf_erosion

news/2025/2/21 4:28:24/

一、图像膨胀和图像腐蚀概念

        我们先定义,需要处理的图片为二值化图像A。图片的背景色为黑色,即像素值为0。图片的目标色为白色,即像素值为1。

        再定义一个结构元S,结构元范围内所有的像素为白色,像素值为1。

1、图像的膨胀

        通俗点说:就是将图像的目标像素往外扩张,使目标的尺寸变大,从而达到膨胀的效果。

        详细点说:一个结构元S从图像左上方开始遍历,结构元上任意一个元素与图像上目标元素重合时,此时将结构元锚点置的像素与对应图像位置的像素求“或运算”,更新像素值到此图像位置(即将结构元锚点位置对应的图像像素更新数值为1,即白色)。以此类推,遍历完图像后,得到的新的图像,即为膨胀后的图像。

        比如上图中,假设使用左侧的3x3结构元,遍历图像时,锚点遍历到原始图像绿色位置。此时可以看到,粉色区域存在数值为1的像素,按照膨胀运算,此时将结构元锚点与原始图像锚点像素进行“或运算”,最终处理后的膨胀像素为1。即原始图像的绿色位置的像素由0变成了1。

2、图像的腐蚀

        通俗点说:就是将图像的目标像素往内收缩,使目标的尺寸变小,从而实现腐蚀的效果。

        详细点说:一个结构元S从图像的左上方开始遍历,若结构元所在的图像区域内,像素值全部为1,那么保持结构元锚点位置的像素值为1,即白色;否则,锚点位置的像素值为0,即黑色。遍历完图像后,得到的新图像,即为腐蚀后的图像。 ​​​​​

        比如上图中,假设使用左侧的3x3结构元,遍历图像时,锚点遍历到原始图像绿色位置。此时可以看到,粉色区域存在数值为0的像素,按照腐蚀运算,锚点处最终处理后的膨胀像素为0。即原始图像的绿色位置的像素由1变成了0。

二、HLS实现

        可能不同资料中讲述腐蚀核膨胀的概念会略有区别,但是核心内容是不变的。本文中重点分析vitis HLS的库函数xf_dilation.hpp和xf_erosion.hpp。

1、xf_dilation.hpp

        在AMD赛灵思提供的解释中,图像膨胀处理,即当前像素被NxN邻域中强度最大值代替。公式表示如下:

         其库函数的调用模板和解释见下面代码:

template <int BORDER_TYPE,     //边界处理方式,目前仅支持XF_BORDER_CONSTANTint TYPE,            //图像类型,目前支持8UC1和8UC3int ROWS,            //图像最大行数int COLS,            //图像最大列数int K_SHAPE,         //结构元的形状,支持矩形、十字形和圆形int K_ROWS,          //结构元行数int K_COLS,          //结构元列数int ITERATIONS,      //迭代次数,仅在结构元为矩形时支持多次迭代int NPC = 1,         //单个时钟处理的像素数int XFCVDEPTH_IN_1 = _XFCVDEPTH_DEFAULT,   //输入图像深度int XFCVDEPTH_OUT_1 = _XFCVDEPTH_DEFAULT>  //输出图像深度
void dilate(xf::cv::Mat<TYPE, ROWS, COLS, NPC, XFCVDEPTH_IN_1>& _src,  //输入图像xf::cv::Mat<TYPE, ROWS, COLS, NPC, XFCVDEPTH_OUT_1>& _dst, //输出图像unsigned char _kernel[K_ROWS * K_COLS])   //输入的结构元数值,处理二值化图像时一般默认都为1

        如何使用该函数,可以自行参考赛灵思提供的示例demo,不再赘述。下面主要解析HLS是怎么实现膨胀运算处理的。

         打开xf_dilation.hpp文件,我们可以看到其c++代码。主要的调用函数有4个如下:

          dilate函数:判断输入图像大小与边界处理方式是否满足函数要求。根据结构元调整参数处理图像膨胀。此函数不进行具体的膨胀处理。

        xfdilate函数:根据结构元大小,考虑到边界情况,创建buf(buf包含图像边界以外行的像素值,初值赋为0)。以便处理第一行图像像素的膨胀。该函数主要考虑行边界预处理,缓存图像数据的数组定义为buf。

        Process_function_d函数:根据结构元大小。考虑到边界情况,给src_buf赋予初值(初值为0),以便处理第1列图像像素的膨胀,。该函数主要考虑列边界的预处理,缓存图像数据的数组定义为src_buf,最后得到与结构元大小一致的src_buf_temp_med_apply,然后提取送入到膨胀处理模块进行处理。

        dilate_function_apply函数:该函数判断窗口区域的图像数据中的最大值,赋值给锚点。该函数为图像膨胀的核心处理函数。

        下面举例说明膨胀函数的处理方式:以8*8的二值化8bits深度的图像,结构元大小为3*3的矩形,NPPC=1。(选取这些参数主要是为了减少篇幅且容易理解)

第一步:在dilate函数判断图像,结构元类型、迭代次数等信息是否满足要求。

第二步:xfdilate函数中创建buf数组,数组的大小为buf[3][8]。并且给buf赋予初值。buf[0]的8个像素值均赋为0;buf[1]的8个像素赋值为原始图像的第一行图像数据。如下图。

第三步:执行Process_function_d函数。首先读取图像2行的原始数据,保存至buf[2]中。此时buf数据更新为下图。

        此时我们要用到一个新的数组src_buf,其大小为src_buf[3][3]。其初值皆为0。buf数组经过buf_cop数组和src_buf_temp_copy_extract的一系列转换,最终会得到如下的src_buf数组,如下图:

        此时位于src_buf中的的锚点位置在原始图像之外,所以函数中存在一个start_write标志,用于控制何时将锚点结果写入到_dst中。很明显,锚点在图像边界之外的结果不写入到_dst矩阵中。

第四步:在dilate_function_apply函数中,比较src_buf中的像素结果,将src_buf的最大值赋值输出,最后判断是否在图像边界外,若在图像区域内,则写入到_dst矩阵中。

        综上,循环执行第三步和第四步,根据图像行列数据的读取,更新buf和src_buf中的数据,遍历完成完图像后,膨胀操作完成。

2、xf_erosion.hpp

        在AMD赛灵思提供的解释中,图像腐蚀处理,即当前像素被NxN邻域中强度最小值代替。公式表示如下:

         其库函数的调用模板和解释见下面代码:

template <int BORDER_TYPE,     //边界处理方式,目前仅支持XF_BORDER_CONSTANTint TYPE,            //图像类型,目前支持8UC1和8UC3int ROWS,            //图像最大行数int COLS,            //图像最大列数int K_SHAPE,         //结构元的形状,支持矩形、十字形和圆形int K_ROWS,          //结构元行数int K_COLS,          //结构元列数int ITERATIONS,      //迭代次数,仅在结构元为矩形时支持多次迭代int NPC = 1,         //单个时钟处理的像素数int XFCVDEPTH_IN_1 = _XFCVDEPTH_DEFAULT,   //输入图像深度int XFCVDEPTH_OUT_1 = _XFCVDEPTH_DEFAULT>  //输出图像深度
void erode(xf::cv::Mat<TYPE, ROWS, COLS, NPC, XFCVDEPTH_IN_1>& _src,  //输入图像xf::cv::Mat<TYPE, ROWS, COLS, NPC, XFCVDEPTH_OUT_1>& _dst, //输出图像unsigned char _kernel[K_ROWS * K_COLS])   //输入的结构元数值,处理二值化图像时一般默认都为1

       腐蚀函数与膨胀函数的处理方式几乎相同,仅在最后的function_apply中,由取最大值更改为取最小值。所以不再增加篇幅描述了。只要明白了膨胀函数的原理,腐蚀函数自然也不在话下。

这里需要提一下的是,如果你需要使用的结构元kernel的列数大于15,则该库函数工作可能不正常,这是由赛灵思库函数的运算算法决定的,感兴趣的可以再自己研究一下。


http://www.ppmy.cn/news/1267600.html

相关文章

Github仓库远程操作——简单版

Github远程操作 github仓库简单的远程操作&#xff0c;更多复杂的功能请参考github官方文档 标题 Github远程操作添加公钥到githubGithub仓库远程操作 远程操作之前&#xff0c;先添加本地的公钥到github 添加公钥到github 创建本地ssh公私钥&#xff1a;使用powershell或者gi…

《C++新经典设计模式》之第7章 单例模式

《C新经典设计模式》之第7章 单例模式 单例模式.cpp 单例模式.cpp #include <iostream> #include <memory> #include <mutex> #include <vector> #include <atomic> using namespace std;// 懒汉式&#xff0c;未释放 namespace ns1 {class Gam…

ClickHouse为何如此之快

针对ClickHouse为什么很快的问题&#xff0c;基于对ClickHouse的基础概念之上&#xff0c;一般会回答是因为是列式存储数据库&#xff0c;同时也会说是使用了向量化引擎&#xff0c;所以快。上面两方面的解释也都能够站得住脚&#xff0c;但是依然不能够解释真正核心的原因。因…

基于Java SSM框架实现大学生校园兼职系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现大学生兼职系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;大学生校园兼职系统当然也不能排除在外。大学生校园兼职系统是以实际运用为开…

geemap学习笔记025:为地图中的底图数据添加颜色条(colorbar)

前言 为地图中的数据添加颜色条&#xff0c;有利于辅助地图的使用&#xff0c;本节就介绍一下如何在底图数据中添加颜色条。 1 导入库并显示地图 import ee import geemapee.Initialize() Map geemap.Map() Map2 添加普通颜色条以及分类颜色条 Map geemap.Map()dem ee.I…

源码角度简单介绍LinkedList

LinkedList是一种常见的数据结构&#xff0c;但是大多数开发者并不了解其底层实现原理&#xff0c;以至于存在很多误解&#xff0c;在这篇文章中&#xff0c;将带大家一块深入剖析LinkedList的源码&#xff0c;并为你揭露它们背后的真相。首先想几个问题&#xff0c;例如&#…

Anaconda建虚拟环境并在jupyter中打开

1.假设要用yaml格式创建虚拟环境 从开始里打开anaconda powersheel 输入&#xff1a; conda env create -f environment.yaml conda activate env_name 注意activate这一行不能少了conda。只写activate env_name也能执行不会报错但是没有用。 如果不用yaml也可以用&#xf…

定档12月28日,WAVE SUMMIT+深度学习开发者大会2023狂欢来袭!

回望2023年&#xff0c;大语言模型或许将是科技史上最浓墨重彩的一笔。从技术、产业到生态&#xff0c;大语言模型在突飞猛进中加速重构万物。随着理解、生成、逻辑、记忆四大能力显著提升&#xff0c;大语言模型为通用人工智能带来曙光。 AI开发者们正在用算法和代码书写一个…