1 时间序列模型入门: LSTM

news/2025/2/21 5:29:32/

0 前言

        循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。本质是一个全连接网络,但是因为当前时刻受历史时刻的影响。

      传统的RNN结构可以看做是多个重复的神经元构成的“回路”,每个神经元都接受输入信息并产生输出,然后将输出再次作为下一个神经元的输入,依次传递下去。这种结构能够在序列数据上学习短时依赖关系,但是由于梯度消失和梯度爆炸问题(梯度反向求导链式法则导致),RNN在处理长序列时难以达到很好的性能。而LSTM通过引入记忆细胞、输入门、输出门和遗忘门的概念(加号的引入),能够有效地解决长序列问题。记忆细胞负责保存重要信息,输入门决定要不要将当前输入信息写入记忆细胞,遗忘门决定要不要遗忘记忆细胞中的信息,输出门决定要不要将记忆细胞的信息作为当前的输出。这些门的控制能够有效地捕捉序列中重要的长时间依赖性,并且能够解决梯度问题。

备注:

输入门:输入的数据有多大程度进入模型;

输出门:控制当前时刻的内部状态 c​有多少信息需要输出给外部状态; 

遗忘门:控制上一个时刻的内部状态, ct−1​需要遗忘多少信息;

nn.LSTM(input_size=embed_dim, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)

embed_dim:每个输入元素的特征维度

hidden_size:隐状态的特征维度,根据工程经验可取 hidden_size = embed_dim * 2

num_layers: LSTM 的层数,一般设置为 1-4 层;

output, (hn, cn) = lstm(input) 

input shape = (batch_size, times_stamp, embed_dim) 

output = (batch_size, times_stamp, hidden_size)

output:表示隐藏层在各个 time step 上计算并输出的隐状态

hn 表示所有隐藏层的在最后一个 time step 隐状态,

cn 表示句子的最后一个单词的细胞状态;

 1 模块介绍

数据: 2023“SEED”第四届江苏大数据开发与应用大赛--新能源赛道的数据

MARS开发者生态社区

解题思路: 总共500个充电站状, 关联地理位置,然后提取18个特征;把这18个特征作为时步不长(记得是某个比赛的思路)然后特征长度为1 (类比词向量的size).

y = LSTM(x,h0,c0)

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
#import tushare as ts
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from tqdm import tqdmimport matplotlib.pyplot as plt
import tqdm
import sys
import os
import gc
import argparse
import warningswarnings.filterwarnings('ignore')# 读取数据
train_power_forecast_history = pd.read_csv('../data/data1/train/power_forecast_history.csv')
train_power = pd.read_csv('../data/data1/train/power.csv')
train_stub_info = pd.read_csv('../data/data1/train/stub_info.csv')test_power_forecast_history = pd.read_csv('../data/data1/test/power_forecast_history.csv')
test_stub_info = pd.read_csv('../data/data1/test/stub_info.csv')# 聚合数据
train_df = train_power_forecast_history.groupby(['id_encode','ds']).head(1)
del train_df['hour']test_df = test_power_forecast_history.groupby(['id_encode','ds']).head(1)
del test_df['hour']tmp_df = train_power.groupby(['id_encode','ds'])['power'].sum()
tmp_df.columns = ['id_encode','ds','power']# 合并充电量数据
train_df = train_df.merge(tmp_df, on=['id_encode','ds'], how='left')### 合并数据
train_df = train_df.merge(train_stub_info, on='id_encode', how='left')
test_df = test_df.merge(test_stub_info, on='id_encode', how='left')h3_code = pd.read_csv("../data/h3_lon_lat.csv")
train_df = train_df.merge(h3_code,on='h3')
test_df = test_df.merge(h3_code,on='h3')def kalman_filter(data, q=0.0001, r=0.01):# 后验初始值x0 = data[0]                              # 令第一个估计值,为当前值p0 = 1.0# 存结果的列表x = [x0]for z in data[1:]:                        # kalman 滤波实时计算,只要知道当前值z就能计算出估计值(后验值)x0# 先验值x1_minus = x0                         # X(k|k-1) = AX(k-1|k-1) + BU(k) + W(k), A=1,BU(k) = 0p1_minus = p0 + q                     # P(k|k-1) = AP(k-1|k-1)A' + Q(k), A=1# 更新K和后验值k1 = p1_minus / (p1_minus + r)        # Kg(k)=P(k|k-1)H'/[HP(k|k-1)H' + R], H=1x0 = x1_minus + k1 * (z - x1_minus)   # X(k|k) = X(k|k-1) + Kg(k)[Z(k) - HX(k|k-1)], H=1p0 = (1 - k1) * p1_minus              # P(k|k) = (1 - Kg(k)H)P(k|k-1), H=1x.append(x0)                          # 由输入的当前值z 得到估计值x0存入列表中,并开始循环到下一个值return x#kalman_filter()
train_df['new_label'] = 0
for i in range(500):#print(i)label = i#train_df[train_df['id_encode']==labe]['power'].valuestrain_df.loc[train_df['id_encode']==label, 'new_label'] = kalman_filter(data=train_df[train_df['id_encode']==label]['power'].values)### 数据预处理
train_df['flag'] = train_df['flag'].map({'A':0,'B':1})
test_df['flag'] = test_df['flag'].map({'A':0,'B':1})def get_time_feature(df, col):df_copy = df.copy()prefix = col + "_"df_copy['new_'+col] = df_copy[col].astype(str)col = 'new_'+coldf_copy[col] = pd.to_datetime(df_copy[col], format='%Y%m%d')#df_copy[prefix + 'year'] = df_copy[col].dt.yeardf_copy[prefix + 'month'] = df_copy[col].dt.monthdf_copy[prefix + 'day'] = df_copy[col].dt.day# df_copy[prefix + 'weekofyear'] = df_copy[col].dt.weekofyeardf_copy[prefix + 'dayofweek'] = df_copy[col].dt.dayofweek# df_copy[prefix + 'is_wknd'] = df_copy[col].dt.dayofweek // 6df_copy[prefix + 'quarter'] = df_copy[col].dt.quarter# df_copy[prefix + 'is_month_start'] = df_copy[col].dt.is_month_start.astype(int)# df_copy[prefix + 'is_month_end'] = df_copy[col].dt.is_month_end.astype(int)del df_copy[col]return df_copytrain_df = get_time_feature(train_df, 'ds')
test_df = get_time_feature(test_df, 'ds')train_df = train_df.fillna(999)
test_df = test_df.fillna(999)cols = [f for f in train_df.columns if f not in ['ds','power','h3','new_label']]# 是否进行归一化
scaler = MinMaxScaler(feature_range=(0,1))
scalar_falg = False
if scalar_falg == True:df_for_training_scaled = scaler.fit_transform(train_df[cols])df_for_testing_scaled= scaler.transform(test_df[cols])
else:df_for_training_scaled = train_df[cols]df_for_testing_scaled = test_df[cols]
#df_for_training_scaled
# scaler_label = MinMaxScaler(feature_range=(0,1))
# label_for_training_scaled = scaler_label.fit_transform(train_df['new_label']..values)
# label_for_testing_scaled= scaler_label.transform(train_df['new_label'].values)
# #df_for_training_scaledclass Config():data_path = '../data/data1/train/power.csv'timestep = 18  # 时间步长,就是利用多少时间窗口batch_size = 32  # 批次大小feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速hidden_size = 256  # 隐层大小output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速num_layers = 2  # lstm的层数epochs = 10 # 迭代轮数best_loss = 0 # 记录损失learning_rate = 0.00003 # 学习率model_name = 'lstm' # 模型名称save_path = './{}.pth'.format(model_name) # 最优模型保存路径config = Config()
x_train, x_test, y_train, y_test = train_test_split(df_for_training_scaled.values, train_df['new_label'].values,shuffle=False, test_size=0.2)# 将数据转为tensor
x_train_tensor = torch.from_numpy(x_train.reshape(-1,config.timestep,1)).to(torch.float32)
y_train_tensor = torch.from_numpy(y_train.reshape(-1,1)).to(torch.float32)
x_test_tensor = torch.from_numpy(x_test.reshape(-1,config.timestep,1)).to(torch.float32)
y_test_tensor = torch.from_numpy(y_test.reshape(-1,1)).to(torch.float32)# 5.形成训练数据集
train_data = TensorDataset(x_train_tensor, y_train_tensor)
test_data = TensorDataset(x_test_tensor, y_test_tensor)# 6.将数据加载成迭代器
train_loader = torch.utils.data.DataLoader(train_data,config.batch_size,False)test_loader = torch.utils.data.DataLoader(test_data,config.batch_size,False)#train_df[cols]
# 7.定义LSTM网络
class LSTM(nn.Module):def __init__(self, feature_size, hidden_size, num_layers, output_size):super(LSTM, self).__init__()self.hidden_size = hidden_size  # 隐层大小self.num_layers = num_layers  # lstm层数# feature_size为特征维度,就是每个时间点对应的特征数量,这里为1self.lstm = nn.LSTM(feature_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x, hidden=None):#print(x.shape)batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size# 初始化隐层状态if hidden is None:h_0 = x.data.new(self.num_layers, batch_size, self.hidden_size).fill_(0).float()c_0 = x.data.new(self.num_layers, batch_size, self.hidden_size).fill_(0).float()else:h_0, c_0 = hidden# LSTM运算output, (h_0, c_0) = self.lstm(x, (h_0, c_0))# 全连接层output = self.fc(output)  # 形状为batch_size * timestep, 1# 我们只需要返回最后一个时间片的数据即可return output[:, -1, :]
model = LSTM(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络loss_function = nn.L1Loss()  # 定义损失函数
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)  # 定义优化器# 8.模型训练
for epoch in range(config.epochs):model.train()running_loss = 0train_bar = tqdm(train_loader)  # 形成进度条for data in train_bar:x_train, y_train = data  # 解包迭代器中的X和Yoptimizer.zero_grad()y_train_pred = model(x_train)loss = loss_function(y_train_pred, y_train.reshape(-1, 1))loss.backward()optimizer.step()running_loss += loss.item()train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,config.epochs,loss)# 模型验证model.eval()test_loss = 0with torch.no_grad():test_bar = tqdm(test_loader)for data in test_bar:x_test, y_test = datay_test_pred = model(x_test)test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))if test_loss < config.best_loss:config.best_loss = test_losstorch.save(model.state_dict(), save_path)print('Finished Training')
train epoch[1/10] loss:293.638: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:41<00:00, 36.84it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:12<00:00, 73.96it/s]
train epoch[2/10] loss:272.386: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:49<00:00, 33.90it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:12<00:00, 77.56it/s]
train epoch[3/10] loss:252.972: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:43<00:00, 35.91it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:13<00:00, 70.65it/s]
train epoch[4/10] loss:235.282: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:45<00:00, 35.27it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:09<00:00, 93.71it/s]
train epoch[5/10] loss:219.069: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:34<00:00, 39.57it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:08<00:00, 103.92it/s]
train epoch[6/10] loss:203.969: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:30<00:00, 41.22it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:09<00:00, 95.62it/s]
train epoch[7/10] loss:189.877: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:35<00:00, 39.19it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:12<00:00, 77.61it/s]
train epoch[8/10] loss:176.701: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:52<00:00, 33.12it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:11<00:00, 81.34it/s]
train epoch[9/10] loss:164.382: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:41<00:00, 36.64it/s]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:08<00:00, 112.27it/s]
train epoch[10/10] loss:152.841: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3727/3727 [01:25<00:00, 43.40it/s]
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 932/932 [00:09<00:00, 94.54it/s]

http://www.ppmy.cn/news/1243059.html

相关文章

【中间件】消息队列中间件intro

中间件middleware 内容管理 introwhy use MQMQ实现漫谈主流消息队列QMQ IntroQMQ架构QMQ 存储模型 本文还是从理论层面分析消息队列中间件 cfeng现在处于理论分析阶段&#xff0c;以中间件例子&#xff0c;之前的blog对于中间件是从使用角度分享了相关的用法&#xff0c;现在就…

巧妙之中见真章:深入解析常用的创建型设计模式

设计模式之创建型设计模式详解 一、设计模式是什么&#xff1f;二、模板方法2.1、代码结构2.2、符合的设计原则2.3、如何扩展代码2.4、小结 三、观察者模式3.1、代码结构3.2、符合的设计原则3.3、如何扩展代码3.4、小结 四、策略模式4.1、代码结构4.2、符合的设计原则4.3、如何…

ES6之class类

ES6提供了更接近传统语言的写法&#xff0c;引入了Class类这个概念&#xff0c;作为对象的模板。通过Class关键字&#xff0c;可以定义类&#xff0c;基本上&#xff0c;ES6的class可以看作只是一个语法糖&#xff0c;它的绝大部分功能&#xff0c;ES5都可以做到&#xff0c;新…

Redis 面试题——持久化

目录 1.概述1.1.Redis 的持久化功能是指什么&#xff1f;1.2.Redis 有哪些持久化机制&#xff1f; 2.RDB2.1.什么是 RDB 持久化&#xff1f;2.2.Redis 中使用什么命令来生成 RDB 快照文件&#xff1f;2.3.如何在 Redis 的配置文件中对 RDB 进行配置&#xff1f;2.4.✨RDB 持久化…

【Linux】xfs文件系统的xfs_info命令

xfs_info命令 ① 查看命令工具自身的版本号 xfs_info -V ② 查看指定XFS设备的详细信息 xfs_info <device_name> 其他的一些命令可以使用man xfs_info去查阅man手册&#xff1a;

TPLink-Wr702N 通过OpenWrt系统打造打印服务器实现无线打印

最近淘到了一个TPLink-Wr702N路由器&#xff0c;而且里面已经刷机为OpenWrt系统了&#xff0c;刚好家里有一台老的USB打印机&#xff0c;就想这通过路由器将打印机改为无线打印机&#xff0c;一番折腾后&#xff0c;居然成功了&#xff0c;这里记录下实现过程&#xff0c;为后面…

知识点小总结

‘Integer(int)‘ 已经过时了 https://blog.csdn.net/qq_43116031/article/details/127793512 解决Java中的“找不到符号“错误 解决Java中的“找不到符号“错误_java: 找不到符号_很酷的站长的博客-CSDN博客 可右键打开 错误: 编码 UTF-8 的不可映射字符 错误: 编码 UTF-8 …

初始React

<!-- React是一个用于构建web和原生态交互界面的库 相对于传统DOM开发优势&#xff1a;组件化开发方式&#xff0c;还有不错的性能 相较于其他前端框架的优势&#xff1a;有丰富的生态和跨平台支持 --> <!-- 使用create-react-app快速搭建开发环境 create-react-app是…