4D毫米波雷达和3D雷达、激光雷达全面对比

news/2024/11/25 4:54:57/

         众所周知,传统3D毫米波雷达存在如下性能缺陷:

        1)静止目标和地物杂波混在一起,难以区分;

        2) 横穿车辆和行人多普勒为零或很低,难以检测;

        3) 高处物体和地面目标不能区分,容易造成误刹,影响安全性;

        4) 角度分辨率低,远处目标位置精度低,误差大;

        5) 点云稀疏,难以识别目标类型。

        4D毫米波雷达突破传统雷达局限性,可以高精度探测目标的距离、速度、水平方位和俯仰方位,使得:        

        1)最远探测距离大幅提高,可达300多米,比激光雷达和视觉传感器都要远;

        2) 4D毫米波雷达水平角度分辨率较高,通常可以达到1°的角度分辨率;

        3) 4D毫米波雷达可以测量俯仰角度,可达到2°的角度分辨率,可在150m处区分地物和立交桥;

        4)多普勒为零或很低的横穿车辆和行人, 通过高精度的水平角和俯仰角可以有效识别目标;

        5)目标点云更密集,信息更丰富,更适合与深度学习框架结合。

        国内外有很多公司在研发4D毫米波雷达,国外有博世、大陆等,国内有森斯泰克、华域汽车等,下表列出了一些典型的公司和产品:

国外主要4D毫米波雷达企业及产品

企业名称

产品频率

通道数

博世

77GHz

12*16=192

大陆

77GHz

12*16=192

电装

77GHz

海拉

77GHz

采埃孚

77GHz

12*16=192

安波福

77GHz

日立

77GHz

Mobileye

77GHz

48*48=2304

特斯拉

77GHz

Arbe

77GHz

48*48=2304

Uhnder

77GHz

Oculii

77GHz

Echodyne

77GHz

Vayyar

77GHz

国内主要4D毫米波雷达企业及产品

企业名称

产品频率

通道数

隼眼科技

77GHz

森思泰克

77GHz

12*16=192

德赛西威

77GHz

楚航科技

77GHz

6*8=48

北京行易道

77GHz

深圳安智杰

77GHz

华域汽车

77GHz

12*16=192

苏州豪米波

77GHz

几何伙伴

77GHz

12*16=192

纳瓦电子

77GHz

12*16=192

华为

77GHz

12*16=192

中兴

77GHz

12*16=192

复睿智行

77GHz

12*16=192

赛恩领动

77GHz

12*16=192

        4D毫米波雷达在各项指标上明显由于传统3D雷达,这里用大陆经典的408雷达和采埃孚frgen21做对比,有更直观的认识。

技术参数

ARS408

FRGEN21

通道数

4T*6R=24

12T*16R=192

工作周期

60ms

60ms

最大点云数

512

3072

最远距离

220m

300m

距离分辨率

0.4m

0.4m

速度分辨率

0.1m/s

0.1m/s

方位角分辨率

1.2°

俯仰角分辨率

10°

2.3°

尺寸估计误差

1.0m

0.5m

朝向估计误差

2.5°

        可以看到,4D雷达在通道数,点云数,最远距离,角分辨力等各方面都明显优于传统3D雷达。当然,指标是抽象的,典型场景的表现更具象,也更有说服力。

典型场景1:地面窨井盖或金属物

​​        下图是典型的城市道路,408雷达将前方的窨井盖识别为静止目标并输出,但4D雷达输出点迹判断为地面点直接过滤,不会形成目标,避免了FCW、AEB等误触发。        下图是路面的连接处,通常是金属,可以看到4D雷达完全检测出来,判断为地面点,不会引起功能问题。典型场景2:指示牌或交通杆

        指示牌和交通杆也是城市道路常见的,下图中408雷达将高处的交通横杆识别为静止目标,但4D雷达的点迹有一定高度,明显高于车辆,会识别为高处点并过滤,不会输出静止目标。典型场景3:十字路口横穿斜穿目标

        十字路口的各类车辆行人等目标对于传统雷达来说很难估计尺寸和朝向,但4D雷达由于点云数量多且精度高,可以基本输出目标轮廓,再通过算法处理得到目标更准确的尺寸和朝向。​        4D雷达性能强,有很多人认为能替代激光雷达,这里用速腾的128线激光雷达M1做对比,两者的指标参数如下。     

        可以看到激光雷达点云数远大于4D雷达,角分辨率也远高于4D雷达,唯二不足的探测距离和速度分辨率。

技术参数

RS-M1

FRGEN21

工作周期

100ms

60ms

最大点云数

70000

3072

最远距离

180m

300m

距离分辨率

0.05m

0.4m

速度分辨率

0.1m/s

方位角分辨率

0.2°

1.2°

俯仰角分辨率

0.2°

2.3°

尺寸估计误差

0.2m

0.5m

朝向估计误差

2.5°

        实车测试同步输出激光雷达和4D雷达目标,可以看到激光雷达尺寸朝向优于4D雷达,但远处目标难以检测,不如4D雷达。        对于近处小目标,激光雷达由于更高的距离角度精度,可以分辨十字路口的行人,但4D雷达对此无能为力。        综合来看,4D毫米波雷达相比3D毫米波雷达功能有明显提升,且产业链成熟,可靠性高,大规模量产价格可控;激光相比4D毫米波雷达功能有提升,但价格较高,性价比偏低;毫米波雷达和视觉融合优势互补,软硬件成熟可靠,性价比高。因此,传感器方案架构可以从多方面综合考虑选择合适的传感器,这里给出一些方案作为参考,仅作为探讨。

传感器配置

性能瓶颈

性能提升

功能提升

当前价格

量产价格

3D前雷达+3D角雷达

静止目标误检

横向误差较大

350+4*200=1150

350+4*200=1150

4D前雷达+3D角雷达

横向误差较大

静止目标误检概率降低85%

正前方切入、切出

AEBACC

1200+4*200=2000

600+4*200=1400

4D前雷达+4D角雷达

侧方、后方切入切出

AEBACCALCLCA

1200+4*400=2800

600+4*300=1800

3D前雷达+3D角雷达+1前激光

横向误差较大

静止目标误检概率降低98%

正前方切入、切出

AEBACC

350+4*200+3500

=4650

350+4*200+2000

=3150

4D前雷达+4D角雷达

+1前激光

侧方、后方切入切出

AEBACCALCLCA

1200+4*400+3500

=6300

600+4*300+2000

=3800


http://www.ppmy.cn/news/1232171.html

相关文章

利用OpenCV实现图片中导线的识别

下面是一个需求,识别图片中的导线,要在图像中检测导线,我们需要采用不同于直线检测的方法。由于OpenCV没有直接的曲线检测函数,如同它对直线提供的HoughLines或HoughLinesP,检测曲线通常需要更多的图像处理步骤和算法&…

创新无界:通义灵码在测试过程中展现的独特魅力

通义灵码基于通义大模型,提供代码智能生成、研发智能问答能力。本文就来介绍下通义灵码在测试过程中的应用。 操作手册: 通义灵码, 阿里云提供的一款基于通义大模型的智能编码辅助工具_云效-阿里云帮助中心 1. 什么是通义灵码 是阿里云出品的一款基于通…

mac添加Chrome插件的方法

如果是.crx的插件 更改后缀crx为zip 后续步骤同下文.zip文件 如果是.zip的插件 使用终端进行解压 注意不要用解压工具解压,一定要用终端,命令行解压 // 进入到“插件名.zip”文件的目录下,输入下面命令: unzip 插件名.zip -…

企业办公文件数据防泄密系统 | 文件、文档、设计图纸、源代码、音视频等核心数据资料防止外泄!

天锐绿盾防泄密软件采用智能透明加密技术,对文件、文档、图纸、源代码、音视频等数据进行加密保护,防止数据泄露。这种加密技术是内核级透明加密技术,可以在不影响员工正常工作的情况下,对需要保护的数据进行加密操作。 PC端访问地…

opencv-python 印刷质量缺陷的视觉检测

Windows10PythonYolov8ONNX图片缺陷识别,并在原图中标记缺陷,有onnx模型则无需配置,无需训练。 ** PythonYolov8ONNX实时缺陷目标检测原文 labelimg使用指南 windows使用YOLOv8训练自己的模型(0基础保姆级教学) pyth…

【C+进阶之路】第六篇:C++11

文章目录 一、【C】C11(1)二、【C】C11(2) 一、【C】C11(1) 【C】C11(1) 二、【C】C11(2) 【C】C11(2) 🌹&#x1f33…

11.21序列检测,状态机比较与代码,按键消抖原理

序列检测 用一个atemp存储之前的所有状态,即之前出现的七位 含无关项检测 要检测011XXX110 对于暂时变量的高位,位数越高就是越早出现的数字,因为新的数字存储在TEMP的最低位 不重叠序列检测 ,一组一组 011100 timescale 1ns…

vue中原生H5拖拽排序_拖拽图片也是同样的道理

原文地址【vue中原生H5拖拽排序_拖拽图片也是同样的道理】 H5有基于拖拽的事件机制&#xff0c;如果你还不熟悉&#xff0c;请看我之前的文章【拖拽上传】中有介绍。 原生拖拽API实现 由于比较简单直接上代码了&#xff1a; <!DOCTYPE html> <html lang"en&qu…