我在Vscode学OpenCV 色彩空间转换

news/2025/1/8 8:16:42/

文章目录

  • 色彩
  • 【 1 】色彩空间(色域)
    • (1)**RGB色彩空间**
      • 与xyz色彩空间的转换
        • 将 RGB 色彩空间转换为 XYZ 色彩空间
        • 将 XYZ 色彩空间转换为 RGB 色彩空间
    • (2)**CMYK色彩空间**
    • (3)**HSV**(**Hue, Saturation, Value**)色彩空间
    • (4)**YUV和YCbCr色彩空间**
  • 【 2 】色彩空间转换
    • 2.1 GRAY色彩空间
      • 2.1.1 转换方式:
      • 2.1.2 BGR -> GRAY
      • 2.1.3 如何证明`Gray = 0.299*R + 0.587*G + 0.114*B`
        • (1) 把彩色图拆分成三层图层
        • (2)证明当图像由 GRAY 色彩空间转换为 RGB 色彩空间时,最终所有通道的值都将是相同的。
  • 【3】类型转换函数

色彩

即是颜色,一种人体视觉系统对光的反射的不同波长的感知的结果。人们又对不同的波长范围的电磁波定义可视光的“颜色”。

在日常生活、美术课中,通过把(红黄蓝)三种颜色成为”认为是能够混合得到其他所有颜色的颜料。
而对于光学,就把(红绿蓝RGB)三基色【此处为了区分名字】是能够创建其他颜色的基本。

例如,RGB值(255, 0, 0)表示纯红色,(0, 255, 0)表示纯绿色,(0, 0, 255)表示纯蓝色,(0, 0, 0)表示黑色,(255, 255, 255)表示白色。

【 1 】色彩空间(色域)

一种抽象的数学模型,以不同的维度和表示方式,色彩学中,人们建立了多种色彩模型,以一维、二维、三维甚至四维空间坐标来表示某一色彩,这种坐标系统所能定义的色彩范围即色彩空间。我们经常用到的色彩空间主要有RGB、CMYK、Lab等。

常见的:

(1)RGB色彩空间

三种基本颜色的不同组合来表示颜色,在计算机图像和电视显示技术中广泛使用。

与xyz色彩空间的转换

在这里插入图片描述

将 RGB 色彩空间转换为 XYZ 色彩空间

在这里插入图片描述

import cv2 as cv# 读取RGB图像
img_rgb = cv.imread("image.jpg")# 将RGB图像转换为XYZ图像
img_xyz = cv.cvtColor(img_rgb, cv.COLOR_BGR2XYZ)
将 XYZ 色彩空间转换为 RGB 色彩空间

在这里插入图片描述

import cv2 as cv# 读取XYZ图像
img_xyz = cv.imread("image.jpg")# 将XYZ图像转换为RGB图像
img_rgb = cv.cvtColor(img_xyz, cv.COLOR_XYZ2BGR)

(2)CMYK色彩空间

青色(Cyan)、品红(Magenta)、黄色(Yellow)加上黑色(Key)四种基本颜色的不同组合来表示颜色。主要用于印刷业。[全彩印刷]

此处缩写使用最后一个字母K而非开头的B,是因为在整体色彩学中已经将B给了RGB的Blue蓝色在这里插入图片描述

(3)HSVHue, Saturation, Value)色彩空间

HSV代表色调(Hue)、饱和度(Saturation)、明度(Value)。

  • 色调(Hue):表示颜色的种类,如红色、蓝色、绿色等。在HSV模型中,色调被表示为角度,范围从0到360度。若从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°。它们的补色是:黄色为60°,青色为180°,紫色为300°;
  • 饱和度(Saturation):表示颜色的纯度,饱和度越高,颜色越纯,饱和度越低,颜色越接近灰色。在HSV模型中,饱和度的范围是0到1。
  • 明度(Value):表示颜色的亮度。在HSV模型中,明度的范围也是0到1,0表示完全的黑色,1表示最亮的颜色。

OpenCV中,可以使用cv.cvtColor函数将RGB色彩空间转换为HSV色彩空间

hsv_image = cv.cvtColor(rgb_image, cv.COLOR_RGB2HSV)

在这里插入图片描述
色调(Hue)是指光的颜色,与光的波长相关。不同的波长对应不同的色调,例如红色、橙色、黄色等。

饱和度(Saturation)表示颜色的纯净度或深浅程度。高饱和度的颜色是纯净的,没有混合其他颜色的成分。低饱和度的颜色则含有更多的灰色或白色成分,使其看起来较淡。

亮度(Value)反映了光的明暗程度,即颜色的明亮度。较高的亮度表示颜色较亮,较低的亮度表示颜色较暗。亮度受到颜色中白色或黑色成分的影响,白色成分增加会使亮度增加,黑色成分增加会使亮度减少。

这些概念描述了颜色的不同特性,色调决定了颜色的种类,饱和度决定了颜色的纯净度,亮度决定了颜色的明暗程度。

(4)YUV和YCbCr色彩空间

Y表示亮度信息,U和V或Cb和Cr表示色度信息,这种分离的方式使得视频压缩更为高效。

在这里插入图片描述
在这里插入图片描述

【 2 】色彩空间转换

是指有一种色彩空间的状态以另一种方式表现出来。
例如:RGB -> HSV 或者RGB -> GRAY
而在OpenCV中,cv的表现是BGR那么就是BGR向HSV或者GRAY等的转变

cv.cvtColor(input_image,flag)input_image 是需要进行空间转换的图像
flag为转换后的类型cv.COLOR_BGR2GRAY:bgr->graycv.COLOR_BGR2HSV:bgr->hsv 

2.1 GRAY色彩空间

GRAY色彩空间,也被称作灰度色彩空间,每个像素按照一个通道去 ’ 灰度 ’ 表示。

这种灰度在先前也介绍过,当时我们以二值图像为引,二值是非黑即白的图像,而在灰度图中给其划分开了 ‘ 灰度级别 ’ (只有256个灰度级别,像素值的范围:[0,255] ,由黑向白)

它可以帮助在图像处理和计算机视觉人物中简化问题,降低复杂性,同时仍然保留了大部分的结构和形状信息。

2.1.1 转换方式:

Gray = 0.299*R + 0.587*G + 0.114*B

这种权重分布是基于人眼对不同颜色的敏感度来设计的。人眼对绿色的敏感度最高,红色次之,蓝色最低。这是因为人眼中的视网膜上有三种类型的颜色感受器,分别对红色、绿色和蓝色光最为敏感。

2.1.2 BGR -> GRAY

由于OpenCV默认是BGR的显示方式。
可以使用cvtColor函数是OpenCV库中的一个函数,用于将图像从一个颜色空间转换到另一个颜色空间。

cvtColor(src, code[, dst[, dstCn]]) -> dst

在这里插入图片描述

The conventional ranges for R, G, and B channel values are:
. - 0 to 255 for CV_8U images
. - 0 to 65535 for CV_16U images
. - 0 to 1 for CV_32F images

参数:
在这里插入图片描述

import numpy as np
import cv2 as cv# 读取一张彩色图片
img = cv.imread('./Pic/test_img.jpg')# 创建一个与输入图像同样大小的空图像,用于存储转换结果
dst = np.zeros_like(img)# 使用cvtColor函数将图片从BGR色彩空间转换到灰度色彩空间
# 我们提供了dst参数,所以函数将把转换结果存储在这个图像中
# 我们也提供了dstCn参数,指定输出图像的通道数为1
cv.cvtColor(img, cv.COLOR_BGR2GRAY, dst=dst, dstCn=1)# 打印转换后的图像的通道数,应该为1
print(dst.shape)# (864, 1920, 3)

np.zeros_like(img)将创建一个与img具有相同形状(即相同的行数和列数)和数据类型的全零数组。这意味着返回的数组将具有与img相同的维度,并且每个元素都将被初始化为零。

这个函数在上述示例中的作用是创建一个与输入图像img具有相同大小和深度的空图像,用于存储cvtColor函数的转换结果。通过使用np.zeros_like(img),我们可以确保创建的空图像与输入图像具有相同的形状和数据类型,从而避免了在转换过程中出现大小或类型不匹配的错误。
在这里插入图片描述

原图在这里插入图片描述

没有参数

import cv2 as cv# 读取一张彩色图片
img = cv.imread('pic.jpg')# 使用cvtColor函数将图片从BGR色彩空间转换到灰度色彩空间
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)# 打印转换后的图像的通道数,应该为1
print(gray.shape)

2.1.3 如何证明Gray = 0.299*R + 0.587*G + 0.114*B

(1) 把彩色图拆分成三层图层

使用函数b,g,r=cv.split(img1)

Step1: 基本代码

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimg1=cv.imread("Pic/test_img.jpg")
# img1=cv.imread("Pic/test_img.jpg",0)  实现下面的同理
src=cv.cvtColor(img1,cv.COLOR_BGR2GRAY)
plt.imshow(img1[:,:,::-1])

在这里插入图片描述

Step2:拆分

b,g,r=cv.split(img1)
img1

在这里插入图片描述
Step3:拆分情况
[ 1 ] 灰度的src(原图img1)
在这里插入图片描述
[ 2 ] b
在这里插入图片描述
[ 3 ] g
在这里插入图片描述
[ 4 ] r
在这里插入图片描述
Step4:计算(因为是整数所以会四舍五入计算)
在这里插入图片描述

(2)证明当图像由 GRAY 色彩空间转换为 RGB 色彩空间时,最终所有通道的值都将是相同的。

从灰度图像(GRAY)转换回RGB图像时,所有的R、G、B通道的值都会是相同的。这是因为灰度图像只有一个通道,所以在转换回RGB图像时,这个单一的通道的值会被复制到R、G、B三个通道。

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 读取灰度图像
img_gray = cv.imread("Pic/test_img.jpg", 0)# 将灰度图像转换为RGB图像
img_rgb = cv.cvtColor(img_gray, cv.COLOR_GRAY2BGR)# 分离RGB通道
b, g, r = cv.split(img_rgb)# 检查R、G、B三个通道的值是否相同
print("R == G: ", np.all(r == g))
print("R == B: ", np.all(r == b))
print("G == B: ", np.all(g == b))

首先读取一个灰度图像,然后将其转换为RGB图像。然后,它分离出R、G、B三个通道,并检查这三个通道的值是否相同。如果所有的输出都是True,那么就证明了在从灰度图像转换为RGB图像时,所有的R、G、B通道的值都是相同的。
在这里插入图片描述

RGB三个通道的值
在这里插入图片描述

【3】类型转换函数

dst = cv2.cvtColor( src, code [, dstCn] )

cv2.cvtColor() 是OpenCV中的一个函数,用于进行颜色空间的转换。它接受三个参数:

  • src:输入图像,可以是一个NumPy数组或一个OpenCV的Mat对象。
  • code:颜色空间转换的代码,指定了要进行的转换类型。常见的转换类型包括:
  • cv2.COLOR_BGR2GRAY:将BGR图像转换为灰度图像。
  • cv2.COLOR_BGR2HSV:将BGR图像转换为HSV色彩空间。
  • cv2.COLOR_BGR2RGB:将BGR图像转换为RGB色彩空间。
  • 其他转换类型可以在OpenCV的文档中找到。
  • dstCn(可选):目标图像的通道数。默认值为0,表示与输入图像的通道数相同。

函数的返回值是转换后的图像,以NumPy数组的形式返回。

【4】标记指定颜色

在 HSV 色彩空间中,H 通道(饱和度 Hue 通道)对应不同的颜色。

1.通过inRange函数锁定特定值

OpenCV 中通过函数 cv2.inRange()来判断图像内像素点的像素值是否在指定的范围内,其
语法格式为:
dst = cv2.inRange( src, lowerb, upperb )
式中:
 dst 表示输出结果,大小和 src 一致。
 src 表示要检查的数组或图像。
 lowerb 表示范围下界。
 upperb 表示范围上界。
返回值 dst 与 src 等大小,其值取决于 src 中对应位置上的值是否处于区间[lowerb,upperb]
内:
 如果 src 值处于该指定区间内,则 dst 中对应位置上的值为 255。
 如果 src 值不处于该指定区间内,则 dst 中对应位置上的值为 0

后续待更新


http://www.ppmy.cn/news/1211961.html

相关文章

基于Kinect 动捕XR直播解决方案 - 硬件篇

Kinect-V2 硬件设备 一、Kinect介绍 1、Kinect for Windows 的开发配置 Kinect V2 操作系统:Windows 10(必须) Windows Surface Windows Surface 2 开发环境:Visual Studio 2017 .NET Framework 4.5 (.NET Framework 4.5) 硬…

常用布局以及其优缺点

当涉及到设计和排版时,有许多不同的布局方式可供选择。以下是几种常见的布局方式以及它们的优缺点: 流式布局(Fluid Layout): 优点:能够根据屏幕大小自动调整内容,适应不同设备。灵活性高&#…

JS实现数据结构与算法

队列 1、普通队列 利用数组push和shif 就可以简单实现 2、利用链表的方式实现队列 class MyQueue {constructor(){this.head nullthis.tail nullthis.length 0}add(value){let node {value}if(this.length 0){this.head nodethis.tail node}else{this.tail.next no…

GPT 学习法:复杂文献轻松的完美理解、在庞大的不确性中找到确定性

GPT 学习法:复杂文献轻松的完美理解、在庞大的不确性中找到确定性 复杂文献 - 基础理解GPT 理解法 - 举例子、归纳、逻辑链推导本质、图示、概念放大器GPT 分析法 - 二分、矩阵、公式、要素、过程 做复杂题:在庞大的不确性中找到确定性思维追踪&#xff…

Ocelot:.NET开源API网关提供路由管理、服务发现、鉴权限流等功能

随着微服务的兴起,API网关越来越常见。API网关是连接应用程序和用户之间的桥梁,就像一个交通指挥员,负责处理所有进出应用的数据和请求,确保安全、高效、有序地流通。 今天给大家推荐一个.NET开源API网关。 01 项目简介 Ocelot…

【蓝桥每日一题]-快速幂,倍增,滑动窗口(保姆级教程 篇1) #麦森数 #青蛙跳

之前是考试准备&#xff0c;所以有几天没更新&#xff0c;今天开始继续更新 目录 快速幂模板 题目&#xff1a;麦森数 思路&#xff1a; 题目&#xff1a;青蛙跳 思路&#xff1a; 快速幂模板 #include <bits/stdc.h> #define ll long long using namespa…

Blender--》点线面操作及其面操作的详解

接下来我会在three.js专栏中分享关于3D建模知识的文章&#xff0c;如果学习three朋友并且想了解和学习3D建模&#xff0c;欢迎关注本专栏&#xff0c;关于这款3D建模软件blender的安装&#xff0c;我在前面的文章已经讲解过了&#xff0c;如果不了解的朋友可以去考考古&#xf…

软件自动化测试平台

软件测试分类黑盒、白盒、功能、API、接口、压力测试和性能测试&#xff0c; 自动化测试平台是一种用于自动化执行软件测试过程的工具。 一、自动化测试平台-功能性 1. 接口自动化&#xff1a;对接软件的接口进行测试&#xff0c;验证接口的功能和性能。 2. Web 自动化&…