python之Cp、Cpk、Pp、Ppk

news/2025/2/11 18:17:50/

目录

1、Cp、Cpk、Pp、Ppk

2、python计算


1、Cp、Cpk、Pp、Ppk

Cp= Process Capability Ratio 可被译为“过程能力指数”

Cpk= Process Capability K Ratio 可被译为“过程能力K指数”

Pp= Process Performance Ratio 可被译为“过程绩效指数”

Ppk= Process Performance K Ratio  可被译为“过程绩效K指数”

当   Cpk<1说明制程能力差,不可接受。

1≤Cpk≤1.33,说明制程能力可以,但需改善。

​1.33≤Cpk≤1.67,说明制程能力正常。

过程绩效指数(Pp和Ppk)是过程的过去或现实;而过程能力指数(Cp和Cpk)是过程的潜能或将来。过程能力指数的计算必须满足"过程稳定"和"数据正态分布"两个必要条件;而用于Pp和Ppk计算的数据则不必进行这两个测试。过程能力指数及过程绩效指数的数学关系是:Cp≥Pp , Cpk≥Ppk。当过程稳定(stable或under control)且数据呈正态分布时Cp=Pp,Cpk=Ppk(注意这里的"="是统计学意义上的相同);只要有特殊原因存在, Cp>Pp , Cpk>Ppk。理解这一点对它们的应用很关键。

如果想知道目前的过程是否已经是达到了稳定的潜在状态时,可以比较过程能力指数和过程绩效指数的差别,即Cp和Pp, Cpk和Ppk的差别:二者差别越小,说明目前的过程的绩效越接近稳定状态,即过程不存在太多的特殊原因引起的偏离(variation)。如果差异很大,则说明过程不稳定,需要找出那些特别的原因,消除这些原因,过程即可被改进。管理者也可以利用过程能力指数和过程绩效指数的差别,制订不断改进的目标。

2、python计算

import numpy as np
import matplotlib.pyplot as plt
def Cp(data,USL,LSL):""":param data: 数据:param USL: 数据指标上限:param LSL: 数据指标下限:return:"""# 计算每组的平均值和标准差sigma = np.std(data, axis=1)m, n = np.shape(data)sum=0for i in range(m):sum+=(n-1)*sigma[i]**2s=np.sqrt(sum/(m*n-m))cp=(USL-LSL)/6/sreturn cp
def Cpk(data,USL,LSL):""":param data: 数据:param USL: 数据指标上限:param LSL: 数据指标下限:return:"""u = np.mean(data)sigma = np.std(data, axis=1)m, n = np.shape(data)sum = 0for i in range(m):sum += (n - 1) * sigma[i] ** 2s = np.sqrt(sum / (m * n - m))cpk=min(USL-u,u-LSL)/3/sreturn cpk
def Pp(data,USL,LSL):""":param data: 数据:param USL: 数据指标上限:param LSL: 数据指标下限:return:"""sigma=np.std(data)pp=(USL-LSL)/6/sigmareturn pp
def Ppk(data,USL,LSL):""":param data: 数据:param USL: 数据指标上限:param LSL: 数据指标下限:return:"""u=np.mean(data)sigma = np.std(data)ppk=min(USL-u,u-LSL)/3/sigmareturn ppk# 使用matplotlib画图
data=np.random.normal(0, 1, (25, 5))
cp=Cp(data,2,-2)
cpk=Cpk(data,2,-2)
pp=Pp(data,2,-2)
ppk=Ppk(data,2,-2)
print("Cp=",cp,"Cpk=",cpk,"Pp=",pp,"Ppk=",ppk)

Cp= 0.7068034057688628 Cpk= 0.705282201140378 Pp= 0.6345352278919454 Ppk= 0.6331695611199301


http://www.ppmy.cn/news/1172948.html

相关文章

编译工具链 之一 基本概念、组成部分、编译过程、命名规则

编译工具链将程序源代码翻译成可以在计算机上运行的可执行程序。编译过程是由一系列的步骤组成的&#xff0c;每一个步骤都有一个对应的工具。这些工具紧密地工作在一起&#xff0c;前一个工具的输出是后一个工具的输入&#xff0c;像一根链条一样&#xff0c;我们称这一系列工…

图论04-【无权无向】-图的广度优先遍历BFS

文章目录 1. 代码仓库2. 广度优先遍历图解3.主要代码4. 完整代码 1. 代码仓库 https://github.com/Chufeng-Jiang/Graph-Theory 2. 广度优先遍历图解 3.主要代码 原点入队列原点出队列的同时&#xff0c;将与其相邻的顶点全部入队列下一个顶点出队列出队列的同时&#xff0c;将…

ARM,基础、寄存器

1.认识ARM 1)是一家公司 2)做RISC处理器内核 3)不生产芯片 2.ARM处理器的最新发展(重要) 高端产品线: cortex-A9 主要做音视频开发&#xff0c;例如&#xff1a;手机 平板..... 中端产品线&#xff1a;cortex-R 主要做实时性要求比较高的系统 例如&#…

LeetCode75——Day14

文章目录 一、题目二、题解 一、题目 643. Maximum Average Subarray I You are given an integer array nums consisting of n elements, and an integer k. Find a contiguous subarray whose length is equal to k that has the maximum average value and return this v…

Qt 之 QUrlQuery使用详解

Qt 之 QUrlQuery 一、QUrlQuery构造函数二、QUrlQuery添加参数2.1 void addQueryItem(const QString &key, const QString &value):添加查询参数。2.2void setQueryItems(const QMap<QString, QString> &map):从`QMap`中批量添加查询参数。三、QUrlQuery获…

k8s集群镜像下载加gradana监控加elk日志收集加devops加秒杀项目

展示 1.配套资料2.devops 3.elk日志收集 4.grafana监控 5.dashboard![在这里插入图片描述](https://img-blog.csdnimg.cn/bf294f9fd98e4c038858a6bf5c34dbdc.png 目的 学习k8s来来回回折腾很久了&#xff0c;光搭个环境就能折腾几天。这次工作需要终于静下心来好好学习了一…

解密Java中神奇的Synchronized关键字

文章目录 &#x1f389; 定义&#x1f389; JDK6以前&#x1f389; 偏向锁和轻量级锁&#x1f4dd; 偏向锁&#x1f4dd; 轻量级锁&#x1f4dd; 自旋锁&#x1f4dd; 重量级锁&#x1f525; 1. 加锁&#x1f525; 2. 等待&#x1f525; 3. 撤销 &#x1f389; 锁优化&#x1f…

【Kotlin精简】第5章 简析DSL

1 DSL是什么&#xff1f; Kotlin 是一门对 DSL 友好的语言&#xff0c;它的许多语法特性有助于 DSL 的打造&#xff0c;提升特定场景下代码的可读性和安全性。本文将带你了解 Kotlin DSL 的一般实现步骤&#xff0c;以及如何通过 DslMarker &#xff0c; Context Receivers 等…