C# Onnx Yolov8 Detect 戴口罩检测

news/2025/1/15 15:38:29/

效果

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Yolov8_Detect
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;string model_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;Mat image;Mat result_image;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;float[] result_array;float[] factors = new float[2];Result result;DetectionResult result_pro;StringBuilder sb = new StringBuilder();private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){startupPath = Application.StartupPath + "\\model\\";model_path = startupPath + "mask.onnx";classer_path = startupPath + "lable.txt";// 创建输出会话options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_ontainer = new List<NamedOnnxValue>();}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));factors[0] = factors[1] = (float)(max_image_length / 640.0);//将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));//输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;//将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();//读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());sb.Clear();sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");for (int i = 0; i < result.length; i++){sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();}else{textBox1.Text = "无信息";}}}
}

下载

源码下载


http://www.ppmy.cn/news/1164684.html

相关文章

在 Visual Studio Code (VS Code) 中设置

在 Visual Studio Code (VS Code) 中设置代理服务器的详细教程如下&#xff1a; 打开 Visual Studio Code。 在顶部菜单栏中&#xff0c;点击 "File"&#xff08;文件&#xff09; > "Preferences"&#xff08;首选项&#xff09; > "Settings…

Spring Boot 3.2四个新特点提升运行性能

随着 Spring Framework 6.1 和 Spring Boot 3.2 普遍可用性的临近&#xff0c;我们想分享一下 Spring 团队为让开发人员优化其应用程序的运行时效率而做出的几项努力的概述。 我们将介绍以下技术和用例&#xff1a; Spring MVC 将使用 基于JDK 21 虚拟线程 Web 堆栈使用 Spri…

详解自定义类型:结构体,位段,枚举,联合

目录 1.结构体 1.1 结构的基础知识 1.2 结构的声明 1.3 特殊的声明 1.4 结构的自引用 1.5 结构体变量的定义和初始化 1.6 结构体内存对齐 1.7 修改默认对齐数 1.8 结构体传参 2. 位段 2.1 什么是位段 2.2 位段的内存分配 2.3 位段的跨平台问题 2.4 位段的应用 3. 枚举…

网络代理技术的护航与网络安全

在数字化时代&#xff0c;网络代理技术日益重要&#xff0c;不仅可维护网络安全&#xff0c;还能促进数据获取。本文深入探讨Socks5代理、IP代理以及它们在网络安全、爬虫、HTTP协议中的应用&#xff0c;助您深刻了解这些技术。 1. Socks5代理&#xff1a;网络安全与多协议支持…

微信小程序设计之主体文件app-json-pages

一、新建一个项目 首先&#xff0c;下载微信小程序开发工具&#xff0c;具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后&#xff0c;注册小程序账号&#xff0c;具体注册方法&#xff0c;可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…

用 Java 在 PDF 中创建和管理图层,实现交互式文档

PDF 图层&#xff08;也称为可见图层或附加图层等&#xff09;是组织和管理 PDF 文档中内容可见性的一种方法。PDF 图层可用于创建交互式文档、隐藏或显示特定信息、创建多语言版本文档等。通过添加和删除图层&#xff0c;用户可以根据需要定制 PDF 文档指定内容的可见性与显示…

Spring Boot如何优雅实现动态灵活可配置的高性能数据脱敏功能

1.背景 在当下互联网高速发展的时代下&#xff0c;涉及到用户的隐私数据安全越发重要&#xff0c;一旦泄露将造成不可估量的后果。所以现在的业务系统开发中都会对用户隐私数据加密之后存储落库&#xff0c;同时还要求后端返回数据给前台之前进行数据脱敏。所谓脱敏处理其实就…

java中什么是不可变类

什么是不可变类 不可变类是指一旦创建对象后&#xff0c;其状态(属性值)就不能被修改的类。 一个不可变类具有以下特征&#xff1a; 类的实例变量声明为私有的&#xff0c;并且没有提供修改这些变量值的公共方法。类是final的&#xff0c;防止被继承。类的实例变量声明为fin…