题目
分割等和子集
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
示例 1:
输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5]
输出:false
解释:数组不能分割成两个元素和相等的子集。
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
题解
记忆化搜索
class Solution {private int[] nums;//这里如果定义布尔数组的话将会无法存储已经遍历的路径private int[][] cache;public boolean canPartition(int[] nums) {int target = 0;for (int x : nums) {target += x;}if (target % 2 != 0 || target < 0) {return false;}target /= 2;this.nums = nums;int n = nums.length;cache = new int[n][target + 1];for (int i = 0; i < n; i++) {Arrays.fill(cache[i],-1);}return dfs(n - 1, target);}public boolean dfs (int i, int c) {if (i < 0) {return c == 0;}if (cache[i][c] != -1) {return cache[i][c] > 0 ? true : false;}if (c < nums[i]) {cache[i][c] = dfs(i - 1, c) ? 1 : 0;return dfs(i - 1, c);}cache[i][c] = (dfs(i - 1, c) || dfs(i - 1, c - nums[i])) ? 1 : 0; return dfs(i - 1, c) || dfs(i - 1, c - nums[i]);}
}
1:1递推
两个数组空间优化
class Solution {public boolean canPartition(int[] nums) {int target = 0;for (int x : nums) {target += x;}if (target % 2 != 0 || target < 0) {return false;}target /= 2;int n = nums.length;boolean[][] f = new boolean[2][target + 1];f[0][0] = true;for (int i = 0; i < n; i++) {for (int c = 0; c <= target; c++) {if (c < nums[i]) {f[(i + 1) % 2][c] = f[i % 2][c];} else {f[(i + 1) % 2][c] = f[i % 2][c] || f[i % 2][c - nums[i]];}}}return f[n % 2][target];}
}
一个数组空间优化
class Solution {public boolean canPartition(int[] nums) {int target = 0;for (int x : nums) {target += x;}if (target % 2 != 0 || target < 0) {return false;}target /= 2;int n = nums.length;boolean[] f = new boolean[target + 1];f[0] = true;for (int x : nums) {for (int c = target; c >= x; c--) {f[c] = f[c] || f[c - x];}}return f[target];}
}