kafka学习-概念与简单实战

news/2025/2/21 9:13:47/

目录

1、核心概念

消息和批次

Topic和Partition

Replicas

Offset

broker和集群

生产者和消费者

2、开发实战

2.1、消息发送

介绍

代码实现

2.2、消息消费

介绍

代码实现

2.3、SpringBoot Kafka

pom

application.yaml

KafkaConfig

producer

consumer


1、核心概念

消息和批次

        kafka的基本数据单元,由字节数组组成。可以理解成数据库的一条数据。

        批次就是一组消息,把同一个主题和分区的消息分批次写入kafka,可以减少网络开销,提高效率;批次越大,单位时间内处理的消息就越多,单个消息的传输时间就越长。

Topic和Partition

        topic主题,kafka通过主题进行分类。主题可以理解成数据库的表或者文件系统里的文件夹。

        partition分区可以理解成一个FIFO的消息队列。(同一个分区的消息保证顺序消费)

        主题可以被分为若干分区,一个主题通过分区将消息存储在kafka集群中,提供横向扩展的能力。消息以追加的方式写入分区,每个分区保证先入先出的顺序读取。在需要严格保证消息顺序消费的场景下,可以将partition设置为1,即主题只有一个分区。

        主题的分区策略有如下几种:

  1. 直接指定分区;
  2. 根据消息的key散列取模得出分区;
  3. 轮询指定分区。

Replicas

  1. 副本,每个分区都有多个副本。其中包含一个首领副本和多个跟随者副本。
  2. 首领副本用于响应生产者的消息写入请求与消费者的消息读取请求;
  3. 跟随者副本用于同步首领副本的数据,保持与首领副本一致的状态,有数据备份的功能。
  4. 一旦首领副本所在的服务器宕机,就会从跟随者中选出一个升级为首领副本。

Offset

        偏移量。

        生产者offset:每个分区都有一个offset,叫做生产者的offset,可以理解为当前这个分区队列的最大值,下一个消息来的时候,就会将消息写入到offset这个位置。

        消费者offset:每个消费者消费分区中的消息时,会记录消费的位置(offset),下一次消费时就会从这个位置开始消费。

broker和集群

broker为一个独立的kafka服务器;一个kafka集群里有多个broker。

        broker接收来自生产者的消息,为消息设置偏移量,并将消息保存到磁盘。同时,broker为消费者提供服务,对读取分区的请求做出响应,返回已经保存到磁盘上的消息。(单个broker可以轻松处理数千个分区以及每秒百万级的消息量)。

        集群中同一个主题的同一个分区,会在多个broker上存在;其中一个broker上的分区被称为首领分区,用于与生产者和消费者交互,其余broker上的分区叫做副本分区,用于备份分区数据,防止broker宕机导致消息丢失。

        每个集群都有一个broker是集群控制器,作用如下:

  1. 将分区分配给首领分区的broker;
  2. 监控broker,首领分区切换

生产者和消费者

        生产者生产消息,消息被发布到一个特定的主题上。默认情况下,kafka会将消息均匀地分布到主题的所有分区上。分区策略有如下几种:

  1. 直接指定分区;
  2. 根据消息的key散列取模得出分区;
  3. 轮询指定分区。

        消费者通过偏移量来区分已经读过的消息,从而消费消息。消费者是消费组的一部分,消费组可以保证每个分区只能被一个消费者使用,避免重复消费。

2、开发实战

2.1、消息发送

介绍

  • 生产者主要有KafkaProducer和ProducerRecord两个对象:KafkaProducer用于发送消息,ProducerRecord用于封装kafka消息。
  • 生产者生产消息后,需要broker的确认,可以选择同步或者异步确认:同步确认效率低;异步确认效率高,但需要设置回调对象。        

代码实现

public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {Map<String, Object> configs = new HashMap<>();// 设置连接Kafka的初始连接⽤到的服务器地址// 如果是集群,则可以通过此初始连接发现集群中的其他brokerconfigs.put("bootstrap.servers", "node1:9092");// 设置key和value的序列化器configs.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");configs.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");configs.put("acks", "1");KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(configs);// 用于封装Producer的消息ProducerRecord<Integer, String> record = new ProducerRecord<Integer, String>("topic_1", // 主题名称0, // 分区编号,现在只有⼀个分区,所以是00, // 数字作为key"message 0" // 字符串作为value);// 发送消息,同步等待消息的确认// producer.send(record).get(3_000, TimeUnit.MILLISECONDS);// 使用回调异步等待消息的确认producer.send(record, new Callback() {@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {System.out.println("主题:" + metadata.topic() + "\n"+ "分区:" + metadata.partition() + "\n"+ "偏移量:" + metadata.offset() + "\n"+ "序列化的key字节:" + metadata.serializedKeySize() + "\n"+ "序列化的value字节:" + metadata.serializedValueSize() + "\n"+ "时间戳:" + metadata.timestamp());} else {System.out.println("有异常:" + exception.getMessage());}}});// 关闭连接producer.close();
}

2.2、消息消费

介绍

        消费者主要有KafkaConsumer对象,用于消费消息。Kafka不支持消息的推送,我们可以通过消息拉取(poll)方式实现消息的消费。KafkaConsumer主要参数如下:

代码实现

public static void main(String[] args) {Map<String, Object> configs = new HashMap<>();// 指定bootstrap.servers属性作为初始化连接Kafka的服务器。// 如果是集群,则会基于此初始化连接发现集群中的其他服务器。configs.put("bootstrap.servers", "node1:9092");// key和value的反序列化器configs.put("key.deserializer", "org.apache.kafka.common.serialization.IntegerDeserializer");configs.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");configs.put("group.id", "consumer.demo");// 创建消费者对象KafkaConsumer<Integer, String> consumer = new KafkaConsumer<Integer, String>(configs);final Pattern pattern = Pattern.compile("topic_[0-9]");// 消费者订阅主题或分区// consumer.subscribe(pattern);// consumer.subscribe(pattern, new ConsumerRebalanceListener() {final List<String> topics = Arrays.asList("topic_1");consumer.subscribe(topics, new ConsumerRebalanceListener() {@Overridepublic void onPartitionsRevoked(Collection<TopicPartition> partitions) {partitions.forEach(tp -> {System.out.println("剥夺的分区:" + tp.partition());});	}@Overridepublic void onPartitionsAssigned(Collection<TopicPartition> partitions) {partitions.forEach(tp -> {System.out.println(tp.partition());});}});// 拉取订阅主题的消息final ConsumerRecords<Integer, String> records = consumer.poll(3_000);// 获取topic_1主题的消息final Iterable<ConsumerRecord<Integer, String>> topic1Iterable = records.records("topic_1");// 遍历topic_1主题的消息topic1Iterable.forEach(record -> {System.out.println("========================================");System.out.println("消息头字段:" + Arrays.toString(record.headers().toArray()));System.out.println("消息的key:" + record.key());System.out.println("消息的值:" + record.value());System.out.println("消息的主题:" + record.topic());System.out.println("消息的分区号:" + record.partition());System.out.println("消息的偏移量:" + record.offset());});// 关闭消费者consumer.close();
}

2.3、SpringBoot Kafka

pom

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency>
</dependencies>

application.yaml

spring:kafka:bootstrap-servers: node1:9092       # 用于建立初始连接的broker地址producer:key-serializer: org.apache.kafka.common.serialization.IntegerSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerbatch-size: 16384                 # 默认的批处理记录数buffer-memory: 33554432           # 32MB的总发送缓存consumer:key-deserializer: org.apache.kafka.common.serialization.IntegerDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializergroup-id: spring-kafka-02-consumer    # consumer的消费组idenable-auto-commit: true              # 是否自动提交消费者偏移量auto-commit-interval: 100             # 每隔100ms向broker提交一次偏移量auto-offset-reset: earliest           # 如果该消费者的偏移量不存在,则自动设置为最早的偏移量

KafkaConfig

@Configuration
public class KafkaConfig {@Beanpublic NewTopic topic1() {return new NewTopic("ntp-01", 5, (short) 1);}@Beanpublic NewTopic topic2() {return new NewTopic("ntp-02", 3, (short) 1);}
}

producer

@RestController
public class KafkaSyncProducerController {@Autowiredprivate KafkaTemplate template;@RequestMapping("send/sync/{message}")public String sendSync(@PathVariable String message) {ListenableFuture future = template.send(new ProducerRecord<Integer, String>("topic-spring-02", 0, 1, message));try {// 同步等待broker的响应Object o = future.get();SendResult<Integer, String> result = (SendResult<Integer, String>) o;System.out.println(result.getRecordMetadata().topic() + result.getRecordMetadata().partition() + result.getRecordMetadata().offset());} catch (InterruptedException e) {e.printStackTrace();} catch (ExecutionException e) {e.printStackTrace();}return "success";}
}@RestController
public class KafkaAsyncProducerController {@Autowiredprivate KafkaTemplate<Integer, String> template;@RequestMapping("send/async/{message}")public String asyncSend(@PathVariable String message) {ProducerRecord<Integer, String> record = new ProducerRecord<Integer, String>("topic-spring-02", 0, 3, message);ListenableFuture<SendResult<Integer, String>> future = template.send(record);// 添加回调,异步等待响应future.addCallback(new ListenableFutureCallback<SendResult<Integer, String>>(){@Overridepublic void onFailure(Throwable throwable) {System.out.println("发送失败: " + throwable.getMessage());}@Overridepublic void onSuccess(SendResult<Integer, String> result) {System.out.println("发送成功:" + result.getRecordMetadata().topic() + "\t" + result.getRecordMetadata().partition() + "\t" + result.getRecordMetadata().offset());}});return "success";}
}

consumer

@Component
public class MyConsumer {@KafkaListener(topics = "topic-spring-02")public void onMessage(ConsumerRecord<Integer, String> record) {Optional<ConsumerRecord<Integer, String>> optional = Optional.ofNullable(record);if (optional.isPresent()) {System.out.println(record.topic() + "\t" + record.partition() + "\t" + record.offset() + "\t" + record.key() + "\t" + record.value());}}
}

以上内容为个人学习理解,如有问题,欢迎在评论区指出。

部分内容截取自网络,如有侵权,联系作者删除。


http://www.ppmy.cn/news/1092675.html

相关文章

春秋云镜 CVE-2017-5638

春秋云镜 CVE-2017-5638 S2-045/S2-046 靶标介绍 2.3.32 之前的 Apache Struts 2 2.3.x 和 2.5.10.1 之前的 2.5.x 中的 Jakarta Multipart 解析器在文件上传尝试期间具有不正确的异常处理和错误消息生成&#xff0c;这允许远程攻击者通过精心制作的内容执行任意命令-Type、C…

IDEA 快捷键大全

目录 一、文本编辑 二、光标操作 三、文本选择 四、代码折叠 五、辅助编码 六、上下文导航 七、查找操作 八、符号导航 九、代码分析 十、运行和调试 十一、代码重构 一、文本编辑 Ctrl Shift V&#xff1a;从历史选择粘贴 Ctrl D&#xff1a;复制光标所在行 …

【基础建设】浅谈企业网络安全运营体系建设

引言 在网络安全环境复杂又严峻的当前&#xff0c;国内各大企业已开始组建自己的网络安全团队&#xff0c;加强企业自身安全能力建设&#xff0c;朝着网络安全运营一体化迈进。但企业安全运营也已逐步从被动式转变为主动式&#xff0c;成为将人、管理与技术结合&#xff0c;全…

Matlab图像处理-高斯低通滤波器

高通滤波 图像的边缘、细节主要位于高频部分&#xff0c;而图像的模糊是由于高频成分比较弱产生的。高通滤波就是为了高消除模糊&#xff0c;突出边缘。因此采用高通滤波器让高频成分通过&#xff0c;消除低频噪声成分削弱&#xff0c;再经傅里叶逆变换得到边缘锐化的图像。 …

PyCharm中使用matplotlib.pyplot.show()报错MatplotlibDeprecationWarning的解决方案

其实这只是一个警告&#xff0c;忽略也可。 一、控制台输出 MatplotlibDeprecationWarning: Support for FigureCanvases without a required_interactive_framework attribute was deprecated in Matplotlib 3.6 and will be removed two minor releases later. MatplotlibD…

高防服务器如何抵御大规模攻击

高防服务器如何抵御大规模攻击&#xff1f;高防服务器是一种专门设计用于抵御大规模攻击的服务器&#xff0c;具备出色的安全性和可靠性。在当今互联网时代&#xff0c;网络安全问题日益严重&#xff0c;DDOS攻击&#xff08;分布式拒绝服务攻击&#xff09;等高强度攻击已成为…

物理机服务器应该注意的事

物理机服务器应该注意的事 1、选址 服务器是个非常重要的硬件产品&#xff0c;对机房的也是有一定的要求的&#xff0c;比如温度、安全性&#xff0c;噪音、电源稳定性等等问题都需要解决!但是不是每个人都会选择自己建立一个机房&#xff0c;毕竟各方面加起来的成本都太高。这…

OpenCV实现Photoshop曲线调整

《QT 插件化图像算法研究平台》有仿Photoshop曲线调整图像的功能&#xff0c;包括RGB曲线调整和HSV曲线调整。 Photoshop曲线调整原理&#xff1a;RGB、HSV各通道曲线&#xff0c;可以理解为一个值映射&#xff08;值转换&#xff09;函数。X轴是输入&#xff0c;Y轴是输出。x0…