扩散模型实战(六):Diffusers DDPM初探

news/2024/11/22 15:07:26/

推荐阅读列表:

扩散模型实战(一):基本原理介绍

扩散模型实战(二):扩散模型的发展

扩散模型实战(三):扩散模型的应用

扩散模型实战(四):从零构建扩散模型

扩散模型实战(五):采样过程

       之前的五篇文章主要是为了解释扩散模型的基本概念和流程,使读者更容易理解扩散模型的工作原理,但与实际工作中使用的模型差异较大,从本文开始,我们将初步使用DDPM模型的开源实现库Diffusers,在Diffusers库中DDPM模型的实现库是UNet2DModel

UNet2DModel模型实战

UNet2DModel模型比之前介绍的BasicUNet模型有一些改进,具体如下:

  • 退化过程的处理方式不同,UNet2DModel通过调节时间步来调节噪声量,t作为一个额外参数被传入前向过程;
  • 训练目标不同,UNet2DModel旨在预测不带缩放系数的噪声(也就是单位正太分布的噪声)而不是”去噪“的图像;
  • UNet2DModel有更多的采样策略可供选择;

下面我们来看一下UNet2DModel的模型参数以及结构,代码如下:

model = UNet2DModel(    sample_size=28,            # 目标图像的分辨率    in_channels=1,         # 输入图像的通道数,RGB图像的通道数为3    out_channels=1,        # 输出图像的通道数    layers_per_block=2,    # 设置要在每一个UNet块中使用多少个ResNet层    block_out_channels=(32, 64, 64), # 与BasicUNet模型的配置基本相同    down_block_types=(         "DownBlock2D",      # 标准的ResNet下采样模块        "AttnDownBlock2D",  # 带有空域维度self-att的ResNet下采样模块        "AttnDownBlock2D",    ),     up_block_types=(        "AttnUpBlock2D",         "AttnUpBlock2D",    # 带有空域维度self-att的ResNet上采样模块        "UpBlock2D",        # 标准的ResNet上采样模块       ),) # 输出模型结构(看起来虽然冗长,但非常清晰)print(model)

我们继续来查看一下UNet2DModel模型的参数量,代码如下:

sum([p.numel() for p in model.parameters()]) # UNet2DModel模型使用了大约170万个参数,BasicUNet模型则使用了30多万个参数
# 输出1707009

       下面是我们使用UNet2DModel代替BasicUNet模型,重复前面展示的训练以及采样过程(这里t=0,以表明模型是在没有时间步的情况下训练的),完整的代码如下:

#@markdown Trying UNet2DModel instead of BasicUNet:# Dataloader (you can mess with batch size)batch_size = 128train_dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# How many runs through the data should we do?n_epochs = 3# Create the networknet = UNet2DModel(    sample_size=28,  # the target image resolution    in_channels=1,  # the number of input channels, 3 for RGB images    out_channels=1,  # the number of output channels    layers_per_block=2,  # how many ResNet layers to use per UNet block    block_out_channels=(32, 64, 64),  # Roughly matching our basic unet example    down_block_types=(        "DownBlock2D",  # a regular ResNet downsampling block        "AttnDownBlock2D",  # a ResNet downsampling block with spatial self-attention        "AttnDownBlock2D",    ),    up_block_types=(        "AttnUpBlock2D",        "AttnUpBlock2D",  # a ResNet upsampling block with spatial self-attention        "UpBlock2D",   # a regular ResNet upsampling block      ),) #<<<net.to(device)# Our loss finctionloss_fn = nn.MSELoss()# The optimizeropt = torch.optim.Adam(net.parameters(), lr=1e-3)# Keeping a record of the losses for later viewinglosses = []# The training loopfor epoch in range(n_epochs):    for x, y in train_dataloader:        # Get some data and prepare the corrupted version        x = x.to(device) # Data on the GPU        noise_amount = torch.rand(x.shape[0]).to(device) # Pick random noise amounts        noisy_x = corrupt(x, noise_amount) # Create our noisy x        # Get the model prediction        pred = net(noisy_x, 0).sample #<<< Using timestep 0 always, adding .sample        # Calculate the loss        loss = loss_fn(pred, x) # How close is the output to the true 'clean' x?        # Backprop and update the params:        opt.zero_grad()        loss.backward()        opt.step()        # Store the loss for later        losses.append(loss.item())    # Print our the average of the loss values for this epoch:    avg_loss = sum(losses[-len(train_dataloader):])/len(train_dataloader)    print(f'Finished epoch {epoch}. Average loss for this epoch: {avg_loss:05f}')# Plot losses and some samplesfig, axs = plt.subplots(1, 2, figsize=(12, 5))# Lossesaxs[0].plot(losses)axs[0].set_ylim(0, 0.1)axs[0].set_title('Loss over time')# Samplesn_steps = 40x = torch.rand(64, 1, 28, 28).to(device)for i in range(n_steps):  noise_amount = torch.ones((x.shape[0], )).to(device) * (1-(i/n_steps)) # Starting high going low  with torch.no_grad():    pred = net(x, 0).sample  mix_factor = 1/(n_steps - i)  x = x*(1-mix_factor) + pred*mix_factoraxs[1].imshow(torchvision.utils.make_grid(x.detach().cpu(), nrow=8)[0].clip(0, 1), cmap='Greys')axs[1].set_title('Generated Samples');
# 输出Finished epoch 0. Average loss for this epoch: 0.020033Finished epoch 1. Average loss for this epoch: 0.013243Finished epoch 2. Average loss for this epoch: 0.011795

可以看出,比BasicUNet网络生成的结果要好一些。

DDPM原理

论文名称:《Denoising Diffusion Probabilistic Models》

论文地址:https://arxiv.org/pdf/2006.11239.pdf

      下面是DDPM论文中的公式,Training步骤其实是退化过程,给原始图像逐渐添加噪声的过程,预测目标是拟合每个时间步的采样噪声。

       还有一点非常重要:我们都知道在前向过程中是不断添加噪声的,其实这个噪声的系数不是固定的,而是与时间t线性增加的(也成为扩散率),这样的好处是在后向过程开始过程先把"明显"的噪声给去除,对应着较大的扩散率;当去到一定程度,逐渐逼近真实真实图像的时候,去噪速率逐渐减慢,开始微调,也就是对应着较小的扩散率。

下面我们使用代码来看一下输入数据与噪声在不同迭代周期的变化:

noise_scheduler = DDPMScheduler(num_train_timesteps=1000)plt.plot(noise_scheduler.alphas_cumprod.cpu() ** 0.5, label=r"${ \sqrt{\bar{\alpha}_t}}$")plt.plot((1 - noise_scheduler.alphas_cumprod.cpu()) ** 0.5,  label=r"$\sqrt{(1 - \bar{\alpha}_t)}$")plt.legend(fontsize="x-large");

生成的结果,如下图所示:

       下面我们来看一下,噪声系数不变与DDPM中的噪声方式在MNIST数据集上的加噪效果:

# 可视化:DDPM加噪过程中的不同时间步# 对一批图片加噪,看看效果fig, axs = plt.subplots(3, 1, figsize=(16, 10))xb, yb = next(iter(train_dataloader))xb = xb.to(device)[:8]xb = xb * 2. - 1. # 映射到(-1,1)print('X shape', xb.shape) # 展示干净的原始输入axs[0].imshow(torchvision.utils.make_grid(xb[:8])[0].detach().    cpu(), cmap='Greys')axs[0].set_title('Clean X') # 使用调度器加噪timesteps = torch.linspace(0, 999, 8).long().to(device)noise = torch.randn_like(xb) # <<注意是使用randn而不是randnoisy_xb = noise_scheduler.add_noise(xb, noise, timesteps)print('Noisy X shape', noisy_xb.shape) # 展示“带噪”版本(使用或不使用截断函数clipping)axs[1].imshow(torchvision.utils.make_grid(noisy_xb[:8])[0].detach().cpu().clip(-1, 1), cmap='Greys')axs[1].set_title('Noisy X (clipped to (-1, 1))')axs[2].imshow(torchvision.utils.make_grid(noisy_xb[:8])[0].   detach().cpu(), cmap='Greys')axs[2].set_title('Noisy X');X shape torch.Size([8, 1, 28, 28])Noisy X shape torch.Size([8, 1, 28, 28])

结果如下图所示:

采样补充

       采样在扩散模型中扮演非常重要的角色,我们可以输入纯噪声,然后期待模型能一步输出不带噪声的图像吗?根据前面的所学内容,这显然行不通。那么针对采样会有哪些改进的思路呢?

  • 可以使用模型多预测几次,以通过估计一个更高阶的梯度来更新得到更准确的结果(更高阶的方法和一些离散的ODE处理器);
  • 保留一些历史的预测值来尝试指导当前步的更新。

http://www.ppmy.cn/news/1061091.html

相关文章

以指标为中心的ABI平台,重塑企业数字化经营|爱分析报告

[图片] 摘要&#xff1a;释放数据价值的破局之道——指标管理应用一体化 在市场竞争日益激烈的当下&#xff0c;数字化经营对于企业的重要性不言而喻。在提高竞争力、降低成本、创新业务模式以及提升客户体验等方面&#xff0c;指标的应用能力一定程度上决定了企业数字化经营效…

eCharts热力图Y轴左上角少一块

问题&#xff1a; 如图 在图例的左上角 Y轴会少一块 官方demo https://echarts.apache.org/examples/zh/editor.html?cheatmap-cartesian 查遍文档 并无解释 也没有告知配置项可解决 解决方式&#xff1a; 图例默认为canvas渲染 切换成SVG渲染 即可解决 代码如下 let…

windows系统activemq一键安装启动

前言 官网下载的mq提供了启动和卸载服务器的脚本&#xff0c;但是安装的时候不会自动启动服务&#xff0c;需要去手动比较麻烦&#xff0c;执行脚本的时候也需要去右键选择管理员执行做起来比较啰嗦。 优化方案 修改脚本权限为自动判断并获取 在脚本开头加入下面的代码 …

Python if-else 速记

文章目录 在 Python 中使用三元运算符作为 if-else 速记总结 编程中经常使用速记符号来简化我们的工作。 速记符号是一种可以更简洁、更省时省力地完成工作的方法。 本文将讨论 Python 中使用的速记符号作为 if-else 语句的快捷方式。 在 Python 中使用三元运算符作为 if-else…

vue3 基础知识 ( 扩展插槽 )03

嘿&#xff01;&#xff01; &#x1f495; 文章目录 一、扩展插槽二、基本使用三 、插槽的默认内容四、具名插槽五、 作用域插槽 一、扩展插槽 在开发中&#xff0c;我们会经常封装一个个可复用的组件&#xff0c;前面我们会通过props传递给组件一些数据&#xff0c;让组件来进…

ensp-Ipv6配置配置

ensp-Ipv6配置配置 &#x1f4ce;ipv6.zip&#x1f4ce;Ipv6 网络.docx

情人节特别篇:用c++弹奏音乐“海阔天空”与“孤勇者”

W...Y的主页 &#x1f495; 代码库分享 &#x1f60a; 目录 孤勇者 海阔天空 今天是2023年8月22日七夕情人节&#xff0c;但是对我来说就是再普通不过的日子。我相信有很多人期待这一天的到来&#xff0c;和自己的对象出去享受快乐时光。但是我只有一个人独孤的度过短暂的时…

【电路设计】220V AC转低压DC电路概述

前言 最近因项目需要,电路板上要加上一个交流220V转低压直流,比如12V或者5V这种。一般来说,比较常见也比较简单的做法是使用一个变压器将220V AC进行降压,比如降到22V AC,但是很遗憾的是,支持220V的变压器一般体积很大,而板子留给电源部分的面积又非常有限,所以不得不研…