Chapter 2 Crystal Dynamics 2.1 晶格振动

news/2024/11/17 0:22:38/

2.1 Lattice Vibration 晶格振动

Born-Oppenheimer Approximation

  • Electrons’ movement: Electron theory
    • free electron theory
    • energy band theory
  • Atoms’ movement
    • crystal dynamics
    • lattice vibration

当研究电子运动时,忽略原子运动;当研究原子运动时,忽略电子运动。

原子运动影响晶体的热、磁、光、超导性质,晶格动力学正是研究原子运动的规律。

2.1.1 1D Monoatomic Chain 一维单原子链

一维单原子链

(1) Equation of motion 运动方程

m u ¨ n = β ( u n + 1 − 2 u n + u n − 1 ) m \ddot u_n = \beta (u_{n+1} - 2u_n + u_{n-1}) mu¨n=β(un+12un+un1)

Two Basic Hypothesises

  1. 简谐振动假设 Harmonic approximation (Harmonic limit): The restoring force on each atom is approximately proportional to its displacement.
    F = − β x F= - \beta x F=βx

  2. 最近邻假设 Nearest-neighbor limit: To calculate the forces simply, only nearest-neighbor interactions of atoms be considered.

如何计算β: Taylor’s series

Atom potential U( r ):

U ( r ) = U ( a ) + ( r − a ) 2 2 ( d 2 U d r 2 ) r = a + … U(r) = U(a) + \frac{(r-a)^2}{2} \left (\frac{d^2 U}{ d r^2} \right )_{r=a} + \dots U(r)=U(a)+2(ra)2(dr2d2U)r=a+

F = − d U ( r ) d r = − [ d 2 U ( r ) d r 2 ] ⋅ ( r − a ) = − β x F = - \frac{d U(r)}{dr} = - \left [ \frac{d^2 U(r)}{dr^2} \right ]\cdot (r-a) = - \beta x F=drdU(r)=[dr2d2U(r)](ra)=βx

∴ β = ( d 2 U d r 2 ) r = a \therefore \beta = \left ( \frac{d^2 U}{dr^2} \right) _{r=a} β=(dr2d2U)r=a

β \beta β is the force constant between nearest-neighbor atoms. It will differ for longitudinal and transverse waves in 3D space. (β可以区分横波和纵波)

(2) Born-Karman boundary condition, Periodic boundary condition 周期性边界条件

假设单原子链是无限延伸的,再空间中构成单原子环。这是一种近似,由于原子个数N很大,可以忽略首尾,从而得到周期性边界条件: u N + 1 = u 1 , u N + n = u n u_{N+1} = u_1, \ \ u_{N+n} = u_n uN+1=u1,  uN+n=un

周期性边界条件和一维单原子链

m u ¨ n = β ( u n + 1 − 2 u n + u n − 1 ) m \ddot u_n = \beta (u_{n+1} - 2u_n + u_{n-1}) mu¨n=β(un+12un+un1)

u ¨ n = − ω 2 u n \ddot u_n = - \omega^2 u_n u¨n=ω2un

u n = A e i ( k x n − ω t ) = A e i ( n a k − ω t ) u_n = A e^{i(kx_n-\omega t)} = Ae^{i(nak-\omega t)} un=Aei(kxnωt)=Aei(nakωt)

∴ m ω 2 = 2 β ( 1 − cos ⁡ k a ) \therefore m \omega^2 = 2\beta (1-\cos{ka}) mω2=2β(1coska)

(3) dispersion relation and lattice wave 色散关系和格波

solve the equation above, then:

ω = 2 β m ∣ sin ⁡ k a 2 ∣ \omega = 2\sqrt{\frac{\beta}{m}} \left | \sin{\frac{ka}{2}} \right | ω=2mβ sin2ka

k = 2 π N a m , m = 0 , ± 1 , ± 2 , … k=\frac{2\pi}{Na}m, \ \ \ m=0, \pm1, \pm2,\dots k=Na2πm,   m=0,±1,±2,

其中,N:单原子链的原子个数(长度),a:晶格常数

相速度(通常意义上的速度): v ϕ = λ T = ω λ 2 π = ω k = 2 β m ∣ sin ⁡ k a 2 ∣ k v_{\phi} = \frac{\lambda}{T} = \frac{\omega \lambda}{2 \pi} = \frac{\omega }{k} = 2\sqrt{\frac{\beta}{m}}\frac{\left |\sin \frac{ka}{2} \right |}{k} vϕ=Tλ=2πωλ=kω=2mβ k sin2ka

群速度(多列波叠加,波的包络前进的速度): v k = d ω d k = a β m cos ⁡ k a 2 v_k = \frac{d \omega}{d k} = a \sqrt{\frac{\beta}{m}}\cos \frac{ka}{2} vk=dkdω=amβ cos2ka

波速与波长有关的现象叫做色散。

k取值不连续,对应不同的振动模式。

ω 0 = β m , ω M = 2 ω 0 , ω m = 0 \omega_0 = \frac{\beta}{m}, \ \ \ \omega_M = 2\omega_0,\ \ \ \omega_m = 0 ω0=mβ,   ωM=2ω0,   ωm=0

晶体振动以格波的形式体现,表现为一种集体行为。一组格波代表一组振动模式,即一组 ( k , ω ) (k,\omega) (k,ω)的取值.

independent lattice wave

ω ( k ) = ω ( k + G ) , G = m ⋅ 2 π a i ^ \omega(k) = \omega(k+G), \ \ \ G=m\cdot \frac{2\pi}{a} \hat i ω(k)=ω(k+G),   G=ma2πi^

The movement of atoms with k or k+G is the same. So only consider k in 1st BZ.

All independent vibrations are described by k inside BZ.
在这里插入图片描述
(1)波矢端点落在布里渊区界面上,行波不再传播(驻波),相邻原子的振动方向相反,满足布拉格定律。
k = π a k=\frac{\pi}{a} k=aπ

(2)长波极限,相速度=群速度,与波长无关,此时的格波是一种弹性波,晶格可看作连续介质(声波)
λ ≫ a , v ϕ = v k = a β m \lambda \gg a, \ \ \ v_{\phi} = v_k = a \sqrt{\frac{\beta}{m}} λa,   vϕ=vk=amβ
在这里插入图片描述
自由度和独立格波数量

2.1.2 1D Diatomic Chain 一维双原子链

(1) equation of motion

在这里插入图片描述
在这里插入图片描述
{ M u ¨ n = β ( ν n + ν n − 1 − 2 u n ) m ν ¨ n = β ( u n + u n + 1 − 2 ν n ) \begin{cases} M \ddot u_n = \beta (\nu_n +\nu_{n-1} - 2u_n) \\ m \ddot \nu _n = \beta (u_n + u_{n+1} - 2\nu_n) \end{cases} {Mu¨n=β(νn+νn12un)mν¨n=β(un+un+12νn)

u N + 1 = u 1 , ν N + n = ν n u_{N+1} = u_1, \ \ \ \nu_{N+n} = \nu_n uN+1=u1,   νN+n=νn

u n = A e i ( n a k − ω t ) , ν n = B e i [ n + 1 2 a k − ω t ] u_n = A e^{i(nak - \omega t)}, \ \ \ \nu_n = Be^{i \left [ \frac{n+1}{2} ak - \omega t \right ]} un=Aei(nakωt),   νn=Bei[2n+1akωt]

代入运动方程可以得到线性齐次代数方程组:

{ ( 2 β − M ω 2 ) A − 2 β cos ⁡ ( 1 2 a k ) B = 0 − 2 β cos ⁡ ( 1 2 a k ) A + ( 2 β − m ω 2 ) B = 0 \begin{cases} (2\beta - M \omega^2) A - 2\beta \cos(\frac{1}{2}ak) B = 0 \\ -2\beta \cos(\frac{1}{2}ak) A + (2\beta - m \omega^2) B=0 \end{cases} {(2βMω2)A2βcos(21ak)B=02βcos(21ak)A+(2βmω2)B=0

线性齐次代数方程组有非零解,则系数行列式为0,从而得到:

∣ 2 β − M ω 2 − 2 β cos ⁡ ( 1 2 a k ) − 2 β cos ⁡ ( 1 2 a k ) 2 β − m ω 2 ∣ = 0 \begin{vmatrix} 2\beta - M \omega^2 & - 2\beta \cos(\frac{1}{2}ak) \\ -2\beta \cos(\frac{1}{2}ak) & 2\beta - m \omega^2 \end{vmatrix} = 0 2βMω22βcos(21ak)2βcos(21ak)2βmω2 =0

(2) dispersion relation 色散关系

ω ± 2 = β ( M + m ) M m { 1 ± 1 − 4 M m ( M + m ) 2 sin ⁡ 2 ( 1 2 a k ) } \omega_{\pm}^2 = \frac{\beta (M+m)}{ Mm } \left \{ 1 \pm \sqrt{ 1 - \frac{4Mm}{(M+m)^2} \sin^2{(\frac{1}{2}ak}) } \right \} ω±2=Mmβ(M+m){1±1(M+m)24Mmsin2(21ak) }

ω ± 2 = β M m [ ( M + m ) ± M 2 + m 2 + 2 M m cos ⁡ ( a k ) ] \omega_{\pm} ^2 =\frac{\beta}{Mm}[(M+m) \pm \sqrt{ M^2 + m^2 + 2Mm\cos{(ak)} }] ω±2=Mmβ[(M+m)±M2+m2+2Mmcos(ak) ]
k = 2 π N a m , , m = 0 , ± 1 , ± 2 , … k=\frac{2\pi}{Na} m,\ \ \ ,m = 0,\pm 1, \pm 2, \dots k=Na2πm,   ,m=0,±1,±2,

一个k 对应两个ω: ω + , ω − \omega_+,\ \ \omega_- ω+,  ω

一维双原子链有两个格波:光学支(Optical Branch)、声学支(Acoustical Branch)

  • 光学支:一个原胞中的两个原子振动方向相反。有明显的光学特征——共振吸收。
  • 声学支:一个原胞中的两个原子振动方向相同。弹性波,色散关系简单,原胞可看作一个整体。
    在这里插入图片描述

一维双原子链的色散关系
comparation with 1D monoatomic chain and 1D diatomic chain:
在这里插入图片描述
在这里插入图片描述

2.1.3 3D Crystal 三维晶体

(1) lattice waves

在这里插入图片描述

(2) dispersion relation/ Phonon spectrum 一些典型晶体的色散关系/声子能量谱

硅:
硅
石墨:
石墨

2.1.4 Quantization of Lattice Waves 格波能量量子化——声子

(1) density of k distribution in k space 波矢k在波矢空间的分布密度

volume of 1st BZ: v b = ( 2 π ) 3 v a v_b = \frac{(2\pi)^3}{v_a} vb=va(2π)3

number of k in 1st BZ:

3D: ρ ( k ) = N ( 2 π ) 3 v a = V ( 2 π ) 3 \rho (k) = \frac{N}{ \frac{(2\pi)^3}{v_a} } = \frac{V}{(2\pi)^3} ρ(k)=va(2π)3N=(2π)3V

V: volume of the primitive unit cell

1D: ρ ( k ) = N a 2 π = L 2 π \rho (k) = \frac{Na}{2\pi} = \frac{L}{2\pi} ρ(k)=2πNa=2πL

2D: ρ ( k ) = S ( 2 π ) 2 \rho(k) = \frac{S}{(2\pi)^2} ρ(k)=(2π)2S

(2) equivalence,将振动模式与谐振子等价

equivalence between a vibration mode and a harmonic oscillator

The energy of crystal corresponding to vibrarion mode k will be E k = T k + U k = 1 2 p k 2 + 1 2 ω 2 q k 2 E_k = T_k + U_k = \frac{1}{2}p_k^2+\frac{1}{2}\omega^2 q_k^2 Ek=Tk+Uk=21pk2+21ω2qk2
which is the energy of a harmonic oscillator with displacement q k q_k qk, momentum p k p_k pk and vibration frequency ω \omega ω.

This tells us the equivalence between the energy of a vibration mode and the energy of a harmonic oscillator. Crystal lattice vibration energy of a monoatomic chain contain N atoms can be expressed as the summation of the energy of N harmonic oscillators.

A 3D monoatomic crystal: E = T + U = 1 2 ∑ k = 1 3 N ( p k 2 + ω k 2 q k 2 ) E = T+U = \frac{1}{2} \sum_{k=1}^{3N} (p_k^2 + \omega_k^2 q_k^2) E=T+U=21k=13N(pk2+ωk2qk2)

Crystal lattice vibration energy of a 3D monoatomic crystal contain N atoms can be expressed as the summation of the energy of 3N harmonic oscillator, whose frequencies are just the frequencies of the 3N independent vibration modes.

( k , ω ) ⟷ ω ( k ) (k, \omega) \longleftrightarrow \omega (k) (k,ω)ω(k)

独立格波 ⟷ \longleftrightarrow 独立的振动模式 ⟷ \longleftrightarrow 谐振子

(3) phonon 声子

Energy of a harmonic oscillator with angular frequency ω \omega ω: KaTeX parse error: Undefined control sequence: \E at position 1: \̲E̲= ( n + \frac{1…

Energy of a vibration mode or a lattice wave with angular frequency ω j ( k ) \omega_j (k) ωj(k): E j ( k ) = ( n j ( k ) + 1 2 ) ℏ ω j ( k ) , n j ( k ) = 0 , 1 , 2 , … E_j(\mathbf{k}) = (n_j(\mathbf{k}) + \frac{1}{2}) \hbar \omega_j (\mathbf{k}), \ \ \ n_j(\mathbf{k})= 0, 1, 2,\dots Ej(k)=(nj(k)+21)ωj(k),   nj(k)=0,1,2,

Total Energy of lattice vibration of a crystal with N unit cells, each cell having P atoms: E = ∑ j = 1 3 P ∑ k = 1 N E j ( k ) = ∑ j = 1 3 P ∑ k = 1 N ( n j ( k ) + 1 2 ) ℏ ω j ( k ) E = \sum_{j=1}^{3P} \sum_{k=1}^{N} E_j (\mathbf{k}) = \sum_{j=1}^{3P} \sum_{k=1}^{N} (n_j(\mathbf{k}) + \frac{1}{2}) \hbar \omega_j(\mathbf{k}) E=j=13Pk=1NEj(k)=j=13Pk=1N(nj(k)+21)ωj(k)

声子 phonon: ℏ ω j ( k ) \hbar \omega_j (\mathbf{k}) ωj(k)

光子 photon: h ν , ℏ ω h\nu, \ \ \hbar \omega hν,  ω

  1. ℏ ω j ( k ) \hbar \omega_j (\mathbf{k}) ωj(k)是格波能量的激发单元,称为“元激发”;声子是一种准粒子,具有动量 ℏ k ^ \hbar \hat k k^,但并不是光子、电子这样的真实粒子。
  2. 声子只存在于晶体中,而不能脱离晶体存在。
  3. 声子动量为准动量,格波的传播并不伴随着质量的定向运动。
  4. 声子数量可以变化: n j ( k ) n_j(\mathbf{k}) nj(k)
  5. 声子是玻色子,遵循Bose-Einstain分布。

(4) lattice vibration energy 晶格振动能

E j ( k ) = ( n j ( k ) + 1 2 ) ℏ ω j ( k ) , n j ( k ) = 0 , 1 , 2 , … E_j(\mathbf{k}) = (n_j(\mathbf{k}) + \frac{1}{2}) \hbar \omega_j (\mathbf{k}), \ \ \ n_j(\mathbf{k})= 0, 1, 2,\dots Ej(k)=(nj(k)+21)ωj(k),   nj(k)=0,1,2,

k B k_B kB :Boltzmann constant

Average energy of harmonic oscillators with angular frequency ω j \omega_j ωj at temperature T: E ˉ i = 1 2 ℏ ω i + ℏ ω i 1 e ℏ ω i k B T − 1 = ( 1 2 + 1 e ℏ ω i k B T − 1 ) ℏ ω i \bar E_i = \frac{1}{2} \hbar \omega_i + \hbar \omega_i \frac{1}{e^{\frac{\hbar \omega_i}{k_B T} - 1}} = \left (\frac{1}{2} + \frac{1}{e^{\frac{\hbar \omega_i}{k_B T} - 1}} \right) \hbar \omega_i Eˉi=21ωi+ωiekBTωi11=(21+ekBTωi11)ωi

T=0K: Zero-point energy: 零点能
E ˉ i = 1 2 ℏ ω i \bar E_i = \frac{1}{2}\hbar \omega_i Eˉi=21ωi

T ≫ 0 K T \gg 0K T0K: ℏ ω ≪ k B T \hbar \omega \ll k_B T ωkBT: 与温度有关的晶格振动能
E ˉ i = 1 2 ℏ ω + k B T ≈ k B T \bar E_i = \frac{1}{2} \hbar \omega + k_B T \approx k_B T Eˉi=21ω+kBTkBT

Total lattice vibration energy of a crystal: E = ∑ i E ˉ i = ∑ i ( 1 2 + 1 e ℏ ω i k B T − 1 ) = ∑ i 1 2 ℏ ω i + ∑ i ℏ ω i e ℏ ω i k B T − 1 = E 0 + E ( T ) E = \sum_i \bar E_i = \sum_i \left( \frac{1}{2} + \frac{1}{e^{\frac{\hbar \omega_i}{k_B T} - 1}} \right ) = \sum_i \frac{1}{2}\hbar \omega_i + \sum_i \frac{\hbar \omega_i}{e^{\frac{\hbar \omega_i}{k_B T} - 1}} =E_0 +E(T) E=iEˉi=i(21+ekBTωi11)=i21ωi+iekBTωi1ωi=E0+E(T)

The problem is that the summation is very difficult to obtain cause the number of independent lattice waves or equivalent harmonic oscillators is very large ( 1 0 23 10^{23} 1023). We need a new concept called “Density of state” to change the summation into integration.

将求和转变为积分

(5) density of states 态密度

The density of states g(ω) is defined as the number of oscillators (or k) per unit
frequency interval.
态密度的定义:单位频率间隔谐振子(振动模式)的数量

g ( ω ) = d n d ω g(\omega) = \frac{dn}{d\omega} g(ω)=dωdn

Total number of oscillators: ∫ 0 ω m g ( ω ) d ω = d N p \int_0^{\omega_m} g(\omega )d\omega = dNp 0ωmg(ω)dω=dNp

where d is dimension, N is unit cell number and p is atom number in a cell.

E 0 = ∫ 0 ω m 1 2 ℏ ω g ( ω ) d ω E_0 = \int_0^{\omega_m} \frac{1}{2} \hbar \omega g(\omega )d\omega E0=0ωm21ωg(ω)dω

E ( T ) = ∫ 0 ω m ℏ ω e ℏ ω k B T − 1 g ( ω ) d ω E(T) = \int_0^{\omega_m} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_B T} - 1}} g(\omega )d\omega E(T)=0ωmekBTω1ωg(ω)dω

∴ E = E 0 + E ( T ) \therefore E = E_0 + E(T) E=E0+E(T)

For one branch of the dispersion relation: d n = g j ( ω ) d ω = ρ j ( k ) d k dn=g_j(\omega) d\omega =\rho_j(k)dk dn=gj(ω)dω=ρj(k)dk
ρ j ( k ) = { L 2 π , 1D S 4 π 2 , 2D V 8 π 3 , 3D \rho_j(k) = \begin{cases} \frac{L}{2\pi}, & \text{1D} \\ \frac{S}{4\pi^2}, & \text{2D} \\ \frac{V}{8\pi^3}, & \text{3D} \end{cases} ρj(k)= 2πL,4π2S,8π3V,1D2D3D

g j ( ω ) = ρ j ( k ) d k d ω j g_j(\omega) = \rho_j(k) \frac{dk}{d\omega_j} gj(ω)=ρj(k)dωjdk

g ( ω ) = ∑ j = 1 d p g j ( ω ) g(\omega) = \sum_{j=1}^{dp} g_j(\omega) g(ω)=j=1dpgj(ω)

lattice vibration ~ harmonic oscillator ~ phonon


http://www.ppmy.cn/news/1032999.html

相关文章

群狼调研(长沙神秘人暗访)—银行网点神秘顾客调查的作用

群狼调研(长沙神秘人暗访)受顾客委托开展银行网点神秘顾客调查,银行网点神秘顾客调查的作用在于: 1. 评估服务质量:通过神秘顾客调查,银行可以了解网点的服务质量如何,包括员工的专业性、礼貌和服务态度,办…

实录分享 | 使用Prometheus和Grafana监控Alluxio运行状况

欢迎来到【微直播间】,2min纵览大咖观点 本次分享主要包括三个方面: Prometheus&Grafana简介环境搭建手动调优 一、 Prometheus&Grafana简介关于Prometheus: Prometheus 是一个开源的完整监控解决方案,其对传统监控系…

国企的大数据岗位方向的分析

现如今大数据已无所不在,并且正被越来越广泛的被应用到历史、政治、科学、经济、商业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。 今天我们就来聊一聊“大屏应用”,说到大屏就一定要聊到数据可视化,现如今&#xf…

使用 ChatGPT 自动执行数据科学任务

​​​​​​​编写Python 1. 列车分类模型 提示:我希望你充当数据科学家并为我编写代码。我有一个数据集[describe dataset]。请建立一个机器学习模型来预测[target variable].

分布式唯一ID实战

目录 一、UUID二、数据库方式1、数据库生成之简单方式2、数据库生成 - 多台机器和设置步长,解决性能问题3、Leaf-segment 方案实现4、双 buffer 优化5、Leaf高可用容灾 三、基于Redis实现分布式ID四、雪花算法 一、UUID UUID的标准形式包含32个16进制数字&#xff…

学习笔记整理-BOM-01-基础知识

一、 BOM常用对象 BOM(Browser Object Model,浏览器对象模型)是JS与浏览器窗口交互的接口。一些与浏览器改变尺寸、滚动条滚动相关的特效,都要借助BOM技术。 1. Window对象 window对象是当前JS脚本运行所处的窗口,而这…

Linux中 socket编程中多进程/多线程TCP并发服务器模型

一、循环服务器(while)【不常用】 一次只能处理一个客户端的请求,等这个客户端退出后,才能处理下一个客户端。缺点:循环服务器所处理的客户端不能有耗时操作。 模型 sfd socket(); bind(); listen(); while(1) {newfd accept();while(1){r…

VMware Workstation 如何启用复制粘贴

产品:VMware Workstation 16 Pro 版本:16.1.1 build-17801498 我们刚安装好的 VMware Workstation 会发现无法复制粘贴文件到虚拟机中,如下为解决方案: 1.点击 虚拟机,点击 安装 VMware Tools(T)...。 2.虚拟机下面会…