AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践

embedded/2025/1/15 19:00:36/

系列篇章💥

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览
AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化
AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理
AI大模型探索之路-训练篇7:大语言模型Transformer库之HuggingFace介绍
AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验
AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践
AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践


目录

  • 系列篇章💥
  • 前言
  • 一、Model类型概览
  • 二、Model Head详解
  • 三、Model API调用实践
    • 1、模型的保存
    • 2、模型的加载
    • 3、模型加载参数
    • 4、模型调用
    • 5、不带Model Head的模型调用
    • 6、带Model Head的模型调用
  • 总结


前言

随着自然语言处理(NLP)领域的不断发展,各种预训练模型层出不穷。其中,基于Transformer架构的预训练模型在各种任务中取得了显著的成果。Hugging Face的transformers库提供了丰富的预训练模型和相关组件,使得研究人员和开发者能够轻松地使用这些模型进行各种NLP任务。本文将介绍transformers库中的Model组件,包括不同类型的预训练模型、Model Head以及如何调用这些模型进行推理。通过本文的介绍,大家可以更好地理解和应用transformers库中的Model组件。

一、Model类型概览

目前基于Transformer的模型主要存在以下三种:
1)仅仅包含Transformer的编码器模型(自编码模型):使用Encoder,可以从两个方向进行编码,拥有双向的注意力机制,即计算每一个词的特征时都看到完整上下文。常见仅仅存在编码器的预训练模型有:ALBERT、BERT、DistilBERT、RoBERTa等。经常被用于的任务:文本分类,命名实体识别,阅读理解等。
2)仅仅存在Transformer的解码器模型:(自回归模型),使用Decoder,拥有单向的注意力机制,即计算每一个词的特征时都只能看到上文,无法看到下文。常见的预训练模型:GPT、GPT-2、GPT-3、Bloom、LLaMA等。经常被用于文本生成中。
3)具有Transformers的编码器-解码器:(序列到序列模型),使用Encoder+Decoder,Encoder部分使用双向的注意力,Decoder部分使用单向注意力。常见的预训练模型为:BART、T5、mBART、GLM等。被用于文本摘要和机器翻译中。

在这里插入图片描述

二、Model Head详解

Model head是模型架构中用于处理特定任务的关键组件,它负责将模型编码的表示映射到任务所需的输出格式:(它们在预训练模型的基础上添加了一层或多层额外的网络结构,以适应任务需求,比如针对特定任务设计分类、问答或生成)
1)ForCausalLM:这是带有因果语言建模头的模型,通常用于解码器(Decoder)类型的任务。这种类型的任务包括文本生成或文本完成,其中生成的每个新词都依赖于之前生成的所有词。
2)ForMaskedLM:这是带有掩码语言建模头的模型,用于编码器(Encoder)类型的任务。这种任务涉及预测文本中被掩盖或隐藏的词,BERT模型就是这种类型的一个例子。
3)ForSeq2SeqLM:这是带有序列到序列语言建模头的模型,适用于需要编码器和解码器共同工作的任务,如机器翻译或文本摘要。
4)ForMultiplechoice:这是用于多项选择任务的模型,它处理包含多个候选答案的输入,并预测正确答案的索引。
5)ForQuestionAnswering:这是问答任务的模型,它从给定的文本中抽取答案。这种模型通常包括一个编码器来理解问题和上下文,然后是一个答案抽取机制。
6)ForSequenceClassification:这是用于文本分类任务的模型,它将整个输入序列映射到一个或多个标签。例如,情感分析或主题分类。
7)ForTokenClassification:这是用于标记分类任务的模型,如命名实体识别(NER),它将序列中的每个标记映射到一个预定义的标签。

这些Model Head提供了一种方便的方法来加载预训练的模型,并针对特定任务进行微调或直接使用。在transformers库中,这些类允许研究人员和开发者快速实现和测试不同的NLP任务,而无需从头开始设计和实现模型架构。

三、Model API调用实践

1、模型的保存

1)直接使用git将模型下载到本地

git clone "https://huggingface.co/hfl/rbt3"

2)save_pretrained保存训练模型
一旦模型被训练完成,你可以使用模型的save_pretrained方法来保存模型和分词器。这通常涉及指定一个保存模型的目录路径。以下是如何保存模型和分词器的示例:

python"># 假设model是一个已经训练好的模型实例
# 假设tokenizer是与model相对应的分词器实例# 指定保存模型和分词器的目录路径
model_save_path = "path_to_save_model"
tokenizer_save_path = "path_to_save_tokenizer"# 保存模型
model.save_pretrained(model_save_path)# 保存分词器
tokenizer.save_pretrained(tokenizer_save_path)

在这个例子中,model_save_path和tokenizer_save_path是你希望保存模型和分词器的目录路径。运行这段代码后,模型和分词器的状态将被保存在指定的目录中,每个目录通常包含多个文件,例如模型的权重文件、配置文件等

2、模型的加载

python">from transformers import AutoConfig, AutoModel, AutoTokenizer

1)在线加载

python">model = AutoModel.from_pretrained("hfl/rbt3", force_download=True)

在这里插入图片描述

2)离线加载

python">model = AutoModel.from_pretrained("/root/代码/Model组件/rbt3")

3、模型加载参数

模型加载
从预训练模型的权重文件中加载整个模型,包括模型的结构、权重等信息。这样可以在需要使用预训练模型进行推理或者继续训练时,直接加载整个模型。

python">model = AutoModel.from_pretrained("/root/代码/Model组件/rbt3")
model.config

输出

python">BertConfig {"_name_or_path": "/root/代码/Model组件/rbt3","architectures": ["BertForMaskedLM"],"attention_probs_dropout_prob": 0.1,"classifier_dropout": null,"directionality": "bidi","hidden_act": "gelu","hidden_dropout_prob": 0.1,"hidden_size": 768,"initializer_range": 0.02,"intermediate_size": 3072,"layer_norm_eps": 1e-12,"max_position_embeddings": 512,"model_type": "bert","num_attention_heads": 12,"num_hidden_layers": 3,"output_past": true,"pad_token_id": 0,"pooler_fc_size": 768,"pooler_num_attention_heads": 12,"pooler_num_fc_layers": 3,"pooler_size_per_head": 128,"pooler_type": "first_token_transform","position_embedding_type": "absolute","transformers_version": "4.35.2","type_vocab_size": 2,"use_cache": true,"vocab_size": 21128
}

加载配置信息
是从预训练模型的配置文件中加载配置信息,而不是整个模型。这样可以在不下载整个模型的情况下,仅加载模型的配置信息

python">config = AutoConfig.from_pretrained("/root/代码/Model组件/rbt3")
Config

输出

python">BertConfig {"_name_or_path": "/root/代码/Model组件/rbt3","architectures": ["BertForMaskedLM"],"attention_probs_dropout_prob": 0.1,"classifier_dropout": null,"directionality": "bidi","hidden_act": "gelu","hidden_dropout_prob": 0.1,"hidden_size": 768,"initializer_range": 0.02,"intermediate_size": 3072,"layer_norm_eps": 1e-12,"max_position_embeddings": 512,"model_type": "bert","num_attention_heads": 12,"num_hidden_layers": 3,"output_past": true,"pad_token_id": 0,"pooler_fc_size": 768,"pooler_num_attention_heads": 12,"pooler_num_fc_layers": 3,"pooler_size_per_head": 128,"pooler_type": "first_token_transform","position_embedding_type": "absolute","transformers_version": "4.35.2","type_vocab_size": 2,"use_cache": true,"vocab_size": 21128
}

4、模型调用

python">sen = "今天天气不错,我的心情也不错!"
tokenizer = AutoTokenizer.from_pretrained("/root/代码/Model组件/rbt3")
inputs = tokenizer(sen, return_tensors="pt")
inputs

输出

python">{'input_ids': tensor([[ 101, 4696,  679, 7231, 8013,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1]])}

5、不带Model Head的模型调用

下面代码从指定路径加载一个预训练的模型,并在加载时设置了output_attentions=True。这意味着模型在推理时不仅会输出最终的logits或预测结果,还会输出每个层的注意力权重。这通常用于调试或分析模型的内部工作机制。

python">model = AutoModel.from_pretrained("/root/代码/Model组件/rbt3", output_attentions=True)
output = model(**inputs)
output

输出

python">BaseModelOutputWithPoolingAndCrossAttentions(last_hidden_state=tensor([[[ 0.3299,  0.8761,  1.1550,  ..., -0.2296,  0.3674,  0.1555],[ 0.6773, -0.5668,  0.0701,  ..., -0.3799, -0.2055, -0.2795],[ 0.0841, -0.0825,  0.5001,  ..., -0.3421, -0.8017,  0.3085],[ 0.0224,  0.4439, -0.1954,  ..., -0.0618, -0.2570, -0.1142],[ 0.1476,  0.7324, -0.2727,  ..., -0.1874,  0.1372, -0.3034],[ 0.3260,  0.8858,  1.1529,  ..., -0.2277,  0.3656,  0.1587]]],grad_fn=<NativeLayerNormBackward0>), pooler_output=tensor([[ 2.3760e-02, -9.9773e-01, -9.9995e-01, -7.9692e-01,  9.9645e-01,1.8497e-01, -2.9150e-01, -1.9350e-02,  9.9650e-01,  9.9989e-01,1.6279e-01, -1.0000e+00, -3.5968e-02,  9.9875e-01, -9.9999e-01,9.9879e-01,  9.9744e-01,  8.8014e-01, -9.8801e-01,  8.8588e-03,-9.3252e-01, -7.1405e-01,  2.3119e-01,  9.7772e-01,  9.9352e-01,-9.9826e-01, -9.9987e-01, -7.6323e-02, -8.6268e-01, -9.9992e-01,。。。-1.0000e+00, -1.0385e-02,  3.3378e-01, -9.7509e-01, -3.8623e-01,-9.2922e-01,  1.8362e-01,  9.9848e-01, -6.6866e-01,  9.1038e-01,-9.6579e-01, -9.9962e-01,  1.7735e-01, -9.9997e-01,  9.8384e-01,1.0000e+00, -1.6213e-01,  9.7850e-01, -9.0667e-01,  1.2217e-01,-9.9999e-01, -9.9999e-01,  8.7128e-01,  9.9946e-01,  1.0102e-01,-9.9855e-01,  1.5214e-01, -9.9987e-01, -2.8880e-01,  5.7587e-01,9.9336e-01, -9.9998e-01,  9.9947e-01, -6.4215e-01,  1.2852e-01,9.8215e-01, -1.0000e+00,  8.4377e-01, -9.9904e-01,  9.9924e-01,-1.0000e+00,  9.9885e-01,  9.1444e-02,  2.1949e-01,  3.0374e-01,9.7917e-01, -9.9957e-01, -1.9862e-01,  9.8820e-01,  9.9878e-01,-4.6083e-01,  9.8808e-01,  2.5509e-02]], grad_fn=<TanhBackward0>), hidden_states=None, past_key_values=None, attentions=(tensor([[[[5.6623e-01, 8.2719e-04, 7.1828e-04, 3.0170e-04, 3.7589e-04,4.3154e-01],[1.0803e-02, 1.0227e-01, 1.1626e-01, 2.4532e-01, 5.2110e-01,4.2390e-03],[4.1117e-02, 1.4175e-01, 2.8284e-01, 2.3116e-01, 2.9142e-01,1.1724e-02],[3.2763e-02, 1.7774e-01, 8.3885e-02, 1.2232e-01, 5.7365e-01,9.6361e-03],[9.1095e-02, 8.2052e-02, 7.2211e-02, 6.6084e-02, 6.5778e-01,3.0778e-02],[6.0973e-01, 1.3369e-03, 1.1642e-03, 7.6050e-04, 1.2266e-03,3.8578e-01]],...[[4.1663e-01, 2.5743e-02, 3.3069e-02, 2.7573e-02, 4.8997e-02,4.4799e-01],[9.3001e-01, 2.1486e-02, 2.9548e-02, 5.0943e-03, 5.1063e-03,8.7589e-03],[5.5021e-02, 8.8170e-01, 3.0817e-02, 7.5048e-03, 2.2834e-02,2.1212e-03],[3.3265e-02, 1.9535e-02, 9.0744e-01, 1.3685e-02, 1.4819e-02,1.1257e-02],[1.7344e-01, 1.0500e-01, 1.1638e-01, 5.0705e-01, 7.0892e-02,2.7225e-02],[7.2889e-02, 9.4428e-03, 1.2270e-02, 2.8002e-02, 4.1791e-01,4.5948e-01]]]], grad_fn=<SoftmaxBackward0>), tensor([[[[4.5796e-01, 9.9558e-03, 1.0020e-02, 2.2092e-02, 6.5916e-02,4.3405e-01],[4.3907e-01, 8.2675e-03, 1.1408e-01, 9.8204e-03, 6.1844e-03,4.2258e-01],[2.1006e-01, 5.2901e-01, 3.7502e-03, 1.8742e-03, 3.6851e-02,2.1846e-01],[3.0209e-01, 1.3334e-04, 3.6354e-01, 1.5319e-03, 4.1311e-02,2.9139e-01],[8.7918e-02, 2.8945e-02, 3.2605e-03, 7.6759e-01, 2.3085e-02,8.9203e-02],[4.5857e-01, 9.8717e-03, 9.9597e-03, 2.0971e-02, 6.6149e-02,4.3448e-01]],...[[5.0059e-01, 1.7413e-03, 9.1523e-04, 5.8339e-03, 6.8815e-03,4.8404e-01],[4.3327e-01, 3.0781e-02, 1.8540e-02, 4.1750e-02, 4.3144e-02,4.3252e-01],[4.6648e-01, 1.6748e-02, 2.3486e-03, 4.6985e-02, 7.2329e-03,4.6021e-01],[4.6306e-01, 8.3569e-03, 5.8932e-03, 5.5269e-02, 1.3125e-02,4.5429e-01],[4.5754e-01, 3.4543e-02, 7.7011e-03, 2.6113e-02, 2.0748e-02,4.5336e-01],[5.0072e-01, 1.7318e-03, 9.1770e-04, 5.7174e-03, 6.6844e-03,4.8423e-01]]]], grad_fn=<SoftmaxBackward0>), tensor([[[[3.1533e-01, 6.1664e-02, 3.2057e-02, 7.3921e-02, 2.0709e-01,3.0993e-01],[3.5292e-01, 9.7867e-02, 7.6420e-02, 5.6472e-02, 6.7811e-02,3.4851e-01],[3.7263e-01, 1.6694e-01, 4.0402e-02, 3.4887e-02, 1.7787e-02,3.6736e-01],[4.6658e-01, 3.5042e-02, 9.0006e-03, 1.9572e-02, 1.0726e-02,4.5908e-01],[3.6866e-01, 7.5453e-02, 4.1273e-02, 4.2048e-02, 1.1026e-01,3.6231e-01],[3.1706e-01, 6.0658e-02, 3.1613e-02, 7.3170e-02, 2.0586e-01,3.1164e-01]],...[[2.7216e-01, 1.2583e-01, 5.1468e-02, 8.0823e-02, 2.0379e-01,2.6593e-01],[1.3690e-01, 3.7407e-02, 4.5398e-01, 2.0540e-01, 3.1681e-02,1.3463e-01],[2.4628e-01, 1.2131e-02, 9.3940e-03, 3.9019e-01, 9.8574e-02,2.4343e-01],[4.4038e-01, 3.6646e-03, 3.7501e-03, 2.5508e-02, 8.7129e-02,4.3957e-01],[3.6957e-01, 3.0530e-02, 6.2554e-02, 1.2588e-01, 4.2998e-02,3.6847e-01],[2.7344e-01, 1.2471e-01, 5.0839e-02, 8.0282e-02, 2.0355e-01,2.6718e-01]]]], grad_fn=<SoftmaxBackward0>)), cross_attentions=None)

6、带Model Head的模型调用

下面代码使用AutoModelForSequenceClassification类加载一个用于序列分类任务的预训练模型。这个类是专门用于文本分类任务的,如情感分析或主题分类,它期望输出是整个输入序列的分类结果。它从指定路径加载模型,并使用inputs进行推理。

python">from transformers import AutoModelForSequenceClassification, BertForSequenceClassification
clz_model = AutoModelForSequenceClassification.from_pretrained("/root/代码/Model组件/rbt3")clz_model(**inputs)

输出

python">SequenceClassifierOutput(loss=None, logits=tensor([[0.2360, 0.2302]], grad_fn=<AddmmBackward0>), hidden_states=None, attentions=None)

1)这段代码中的模型调用使用了带有特定Model Head的模型。在Transformer模型架构中,Model Head(模型头部)是指模型主体结构之后的输出层,它根据具体任务对模型的输出进行适配和映射。Model Head通常包含了一些额外的全连接层或其他特定于任务的结构
2)AutoModelForSequenceClassification:这个类是transformers库提供的,用于自动选择适合序列分类任务的预训练模型。它在加载预训练模型权重后,会添加一个适合分类任务的头部(Model Head)
3)当使用AutoModelForSequenceClassification进行推理时,模型不仅执行了特征提取和编码,还通过Model Head进行了分类预测,输出通常是每个类别的得分或概率,你可以直接根据这些得分或概率进行标签的预测。

指定参数加载模型

python">clz_model = AutoModelForSequenceClassification.from_pretrained("/root/代码/Model组件/rbt3", num_labels=2)

输出:10

这段代码与上面代码类似,但它在加载模型时额外指定了num_labels=2参数。这个参数对于序列分类模型是重要的,因为它告诉模型输出层期望的输出尺寸,即分类标签的数量。如果模型被微调用于一个具有两个标签的分类任务(如正面情感和负面情感),这个参数是必须的。如果没有正确设置num_labels,模型的输出可能无法正确映射到标签空间。

总结

通过上述步骤,展示了如何使用Hugging Face的transformers库中的Model组件来执行各种NLP任务。Model组件的选择和使用对于实现高效和准确的NLP模型至关重要。

在这里插入图片描述

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!


http://www.ppmy.cn/embedded/32079.html

相关文章

CSS之盒子模型

目录 背景: 发展历程: 盒子模型: 总结: 背景: 当我们打开网页时&#xff0c;看到的不仅仅是文字和图片&#xff0c;还有各种各样的排版、布局和设计。这些都离不开 CSS&#xff08;层叠样式表&#xff09;的功劳。 层叠样式表(英文全称:Cascading style Sheets)是一种用来表…

【Java 算法实现】合并两个有序数组(逆向双指针)

【Java 算法实现】合并两个有序数组 题目描述 给定两个按非递减顺序排列的整数数组 nums1 和 nums2&#xff0c;以及两个整数 m 和 n&#xff0c;分别表示 nums1 和 nums2 中的元素数目。 你需要将 nums2 合并到 nums1 中&#xff0c;使合并后的数组同样保持非递减顺序排列。…

python笔记:dataclass

1 引子&#xff1a;其他类似实现方法的局限性 假设我们现在需要实现这样的内容&#xff1a; nameChinaarea960population140967 1.1 tuple/list country1_tuple(China,960,140967) country1_tuple[0] #China 缺点&#xff1a;需要记住各个属性是list/tuple第几位的属性&am…

什么是CI/CD流水线

在软件开发中&#xff0c;流水线系统&#xff08;通常被称为CI/CD流水线或部署流水线&#xff09;是一种自动化的过程&#xff0c;用以快速、可靠地将软件从开发阶段引向生产阶段。CI代表持续集成&#xff08;Continuous Integration&#xff09;&#xff0c;而CD代表持续交付&…

行为型设计模式

一、责任链设计模式 &#xff08;一&#xff09;概念 使多个对象都有机会处理同一个请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链&#xff0c;并沿着这条链传递该请求&#xff0c;直到有一个对象处理它为止。 &#xff08;二&#xf…

# 从浅入深 学习 SpringCloud 微服务架构(八)Sentinel(1)

从浅入深 学习 SpringCloud 微服务架构&#xff08;八&#xff09;Sentinel&#xff08;1&#xff09; 一、sentinel&#xff1a;概述 1、前言 – 服务熔断 Hystrix 的替换方案。 1&#xff09;2018年底 Netflix 官方宣布 Hystrix 已经足够稳定&#xff0c;不再积极开发 Hys…

快速入门Pandas和NumPy数据分析

大家好&#xff0c;从商业智能到科学研究&#xff0c;数据分析在许多领域中都是一项重要技能。Python因其可读性强和强大的库生态系统而成为最受欢迎的数据分析语言之一&#xff0c;Pandas和NumPy是重要的基础工具&#xff0c;适用于任何想要分析和解释数据的人。本文将探讨如何…

恶补《操作系统》4_1——王道学习笔记

4文件管理 4.1_1 初识文件管理 操作系统提供的功能&#xff1a; 处理机管理存储器管理文件管理设备管理 目标&#xff1a;安全高效 关于文件管理&#xff1a; 1&#xff09;计算机中存放了各种各样的文件&#xff0c;一个文件有哪些属性? 文件名:由创建文件的用户决定文件…