5G-A有何能耐?5G-A三载波聚合技术介绍

server/2025/4/1 4:21:59/

2024年被称作5G-A元年。5G-A作为5G下一阶段的演进技术,到底有何能耐呢?   三载波聚合(3CC)被认为是首个大规模商用的5G-A技术,将带来手机网速的大幅提升。  

 什么是3CC

3CC,全称叫3 Component Carriers,三载波聚合或三载波单元。(Component是“组成、部件”的意思,而Carrier是“载波、载体”的意思,3CC直译应该是“三个组成载波”。)   众所周知,无线通信需要占用无线电磁波频段。所谓“3CC”,就是运营商将自己的三个频段进行合并,组成更大的频段带宽,进而实现更高的速率。   简单来说,就像把三个不同的车道合并成一个更宽的车道,以此提升车辆通行能力。  

a6d4037a-eb62-11ee-a297-92fbcf53809c.png

  3CC属于载波聚合(CA,Carrier Aggregation)技术。说到载波聚合,大家应该不会陌生。早在4G时代,载波聚合就已经声名鹊起了。   当时,FDD LTE的下行峰值速度只有150M,TD-LTE只有100M,都达不到ITU-R提出的4G(IMT-ADVanced)标准硬性要求(固定或低速移动时,下行速率在1Gbps以上;高速移动时,下行速率在100Mbps以上)。  

a6df63dc-eb62-11ee-a297-92fbcf53809c.png

  于是,3GPP就搞出来一个LTE-Advanced(也就是LTE-A),通过载波聚合技术(最多能五个载波进行聚合),实现超过1Gbps的速率,勉强拿到了4G的“称号”。   而传统的LTE,其实不算4G,而是3.9G,或“准4G”。   如今,我们到了5G时代,再次使出了“载波聚合”这一招,不再是为了“正名”(5G NR已经符合ITU的5G标准要求),而是为了在指标上有进一步突破。      

通信频率带宽,是影响速率的最主要因素。

  5G分为Sub-6GHz频段和毫米波频段。毫米波频段在国内暂时没有放开,6GHz频段(5.925-7.125GHz)虽然国内会用于移动通信,但暂时也没有动用的迹象。   所以,在调制、编码等技术已经接近能力极限的情况下,想要进一步提升连接速率,就只能充分利用已有的频段资源(<6GHz的这些频段)。  

a6f80dba-eb62-11ee-a297-92fbcf53809c.png

国内运营商频段分布图   3CC就是基于这个前提出现的。   运营商将自己的不同频段(含共建共享频段)进行绑定,实现更高的速率,一方面可以满足用户的需求,另一方面也有利于品牌宣传。  

   3CC的技术看点

载波聚合(CA)刚提出来的时候,就分为3类,分别是:   频带内相邻CA:两个载波属于3GPP规定的同一频段,并且在频域上是连续的。   频带内不相邻CA:两个载波属于3GPP规定的同一频段,但是在频域上是不连续的。   频带外不相邻CA:两个载波属于3GPP规定的不同频段。   如下图所示:  

a7028f06-eb62-11ee-a297-92fbcf53809c.png

  参与载波聚合的每个载波,就是前面说的Component Carrier,业界称分量载波。   分量载波也有分类。承载信令传输并管理其他分量载波的分量载波,称之为主载波,也叫Pcell(Primary cell)。  

用来扩展带宽和提高速率,由主载波来决定何时增加或删除的,称为辅载波,也叫Scell(Secondary Cell)。  

国内运营商搞3CC,有各自不同的聚合方案。   中国移动,目前采用的方案之一是700MHz(30M)+ 2.6GHz(100M)+ 4.9GHz(100M ),一共230M带宽。

中国移动在2.6GHz频段还有60M,未来逐步也会用于5G,变成2.6GHz(100M+60M)+ 4.9GHz(100M ),一共260M带宽。  

a706a758-eb62-11ee-a297-92fbcf53809c.png

  中国电信和中国联通,主要采用的是2.1GHz(40M)+ 3.5GHz(200M,含共建共享) 的方案。有的地方,会加上900MHz的2×11M。也有的地方,只用了3.5GHz的200M。   看网上的新闻报道,国内运营商很多省市都做了3CC试点,大部分测速都是4Gbps以上。浙江嘉兴移动甚至有官方报道称超过了5Gbps(3CC+1024QAM),应该是目前看到的最高下行测速。  

    上行速率的话,结合SUL(上下行解耦、辅助上行、超级上行)技术,目前普遍也能测到大几百Mbps甚至1Gbps以上(上海联通,1.04Gbps)。   需要注意的是,测速和很多因素有关系——周围终端数量,环境干扰,是否采用了Massive MIMO或高阶调制,都会影响测速结果。所以,测速值看看就好,横向对比PK意义不大。   细心的读者应该注意到了,3CC所使用的频段既有FDD频段,也有TDD频段。是的,3CC具备这样的能力,可以支持“F+T”。

  3CC能带来显著的体验提升,背后还是离不开一些技术创新。   3GPP R18标准马上就要正式冻结了,这是5G-A的第一个版本。在R18里,有好几项技术和3CC有关,例如FSA和MB-SC。   FSA是Flexible Spectrum Access(灵活频谱接入)。它可以进行智能多载波寻优,将上行全频段自由拆分、灵活组合,实现控制信道合一与数据信道统一调度,能有效提高资源利用率,改善上行体验。   MB-SC是Multi-Band Serving Cell(多频段服务小区)。它可以将非连续的分散频谱集成重构,形成虚拟大带宽,能进一步提高资源利用率,改善上行体验。   这些技术,对不同频段、载波、时隙的频谱资源进行统一管理调度,充分发挥载波聚合的优势。    

 3CC的应用场景

  前面我们说了,3CC最直接的效果,就是大幅提升了网络连接速率,从现在不到1Gbps,直接飙升到3~5Gbps。即便考虑到用户数较多的场景,达到1Gbps以上的体验速度也是轻轻松松。   超大带宽,将进一步满足视频直播、云游戏、裸眼3D、XR/VR等新业务的需求,带给用户更好的使用体验。   在高铁站、地铁站、机场等交通枢纽,还有体育馆、旅游景点、城中村等人员密集的场所,3CC的带宽优势,将会发挥作用。目前,运营商建设的3CC区域,也主要集中于这些场所,大部分通过微基站实现。   在行业互联网领域,3CC也有很大应用价值。像智能制造、AI检测、远程巡检、安防监控、远程挖矿等场景,会有大量的高速率终端或高清摄像头,对传输速率和带宽有需求,也可以通过3CC来解决。  

3CC在升级带宽的同时,仍然具备QoS差异化保障能力。   也就是说,它可以根据业务等级和服务质量要求,智能调度和分配带宽资源,以确保关键业务在复杂网络环境中得到优先、连续且稳定的通信保障。这对于垂直行业应用场景极为重要。   3CC其实还有一个潜在的热门应用场景,那就是FWA(固定无线接入)。通过3CC,可以给CPE提供更大的带宽,方便家庭、租客、游客、小微企业快速获得宽带接入能力。    

 支持3CC的终端

  并不是所有的手机都支持3CC。   目前,只要是采用了高通X75基带和联发科M80基带的手机,理论上都可以支持3CC。   以M80为例,支持3载波聚合(300MHz)的5G NR(FR1),支持8载波聚合的5G mmWave(FR2)。一般来说,支持最高下行速率5Gbps,上行1Gbps。   从具体手机型号来看,荣耀Magic6 Pro,小米14 Pro,vivo X 100 Pro,OPPO Find X7等,都支持3CC。其它型号,等待进一步验证。苹果手机,目前的型号应该都不支持。    

 最后的话

好了,以上就是关于3CC的介绍。今年,运营商一定会大力推动3CC的普及。   随着5G-A的不断升级,以及越来越多的新型号手机进入市场,大家也会逐步感受到了3CC带来的超大带宽体验。   在6G到来之前,除非6GHz和毫米波放开,5Gbps应该是我们能享受到的最高网速了。还是那句老话,网速快是一方面,有应用场景是另一方面。希望5G/5G-A的爆款应用尽快出现,这样才有动力推进技术的持续演进。

【以上信息由艾博检测整理发布,如有出入请及时指正,如有引用请注明出处,欢迎一起讨论,我们一直在关注其发展!专注:CCC/SRRC/CTA/运营商入库】

文章来源:https://blog.csdn.net/weixin_47371464/article/details/137644826
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.ppmy.cn/server/686.html

相关文章

Java拓扑排序知识点(含面试大厂题和源码)

拓扑排序是针对有向无环图(DAG)的一种排序算法,它将图中的所有顶点排成一个线性序列,使得对于任何一条有向边 U -> V,顶点 U 都在顶点 V 的前面。拓扑排序是许多算法的前置步骤,如课程规划、工程任务调度…

图像分割:Pytorch实现UNet++进行医学细胞分割

图像分割:Pytorch实现UNet进行医学细胞分割 前言相关介绍项目结构具体步骤准备数据集读取数据集设置并解析相关参数定义网络模型定义损失函数定义优化器训练验证 参考 前言 由于本人水平有限,难免出现错漏,敬请批评改正。更多精彩内容&#x…

clickhouse ttl不生效

现象: 日志保留31天, 但是发现1年前的数据还有。 表结构: CREATE TABLEads_xxxx_metrics_1m_local (static_time String COMMENT 统计时间,......) ENGINE ReplacingMergeTree (process_time) PARTITION BYtoYYYYMMDD (toDate (static_tim…

办公软件巨头CCED、WPS迎来新挑战,新款办公软件已形成普及之势

办公软件巨头CCED、WPS的成长经历 CCED与WPS,这两者均是中国办公软件行业的佼佼者,为人们所熟知。 然而,它们的成功并非一蹴而就,而是经过了长时间的积累与沉淀。 CCED,这款中国大陆早期的文本编辑器,在上…

excel里如何的科学计数法的数字转换成数值?

比如下图,要想把它们转换成3250跟1780,有什么快捷的办法吗? 科学计数法在excel里的格式,与我们常规在数学上写的有差异。这个转换可以这样做: 1.转换后的效果: 2.问题分析 题目中所附截图,单元…

将Ubuntu18.04默认的python3.6升级到python3.8

1、查看现有的 python3 版本 python3 --version 2、安装 python3.8 sudo apt install python3.8 3、将 python3.6 和 3.8 添加到 update-alternatives sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1 sudo update-alternatives --insta…

【嵌入式之中断】

Cortex-M4集成了嵌套式矢量型中断控制器(Nested Vectored Interrupt Controller (NVIC))来实现高效的异常和中断处理。NVIC实现了低延迟的异常和中断处理,以及电源管理控制。它和内核是紧密耦合的。 凡是打断程序顺序执行的事件都称为异常(exception&am…

demo(四)nacosgateway(2)gatewayspringsercurity

一、思路 1、整体思路 用户通过客户端访问项目时,前端项目会部署在nginx上,加载静态文件时直接从nginx上返回即可。当用户在客户端操作时,需要调用后端的一些服务接口。这些接口会通过Gateway网关,网关进行一定的处理&#xff0…